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Abstract
Evaluating agent performance when outcomes are stochas-
tic and agents use randomized strategies can be challeng-
ing when there is limited data available. The variance of
sampled outcomes may make the simple approach of Monte
Carlo sampling inadequate. This is the case for agents play-
ing heads-up no-limit Texas hold’em poker, where man-
machine competitions typically involve multiple days of
consistent play by multiple players, but still can (and some-
times did) result in statistically insignificant conclusions.
In this paper, we introduce AIVAT, a low variance, prov-
ably unbiased value assessment tool that exploits an arbi-
trary heuristic estimate of state value, as well as the explicit
strategy of a subset of the agents. Unlike existing techniques
which reduce the variance from chance events, or only con-
sider game ending actions, AIVAT reduces the variance both
from choices by nature and by players with a known strategy.
The resulting estimator produces results that significantly
outperform previous state of the art techniques. It was able
to reduce the standard deviation of a Texas hold’em poker
man-machine match by 85% and consequently requires 44
times fewer games to draw the same statistical conclusion.
AIVAT enabled the first statistically significant AI victory
against professional poker players in no-limit hold’em. Fur-
thermore, the technique was powerful enough to produce
statistically significant results versus individual players, not
just an aggregate pool of the players. We also used AIVAT
to analyze a short series of AI vs human poker tournaments,
producing statistical significant results with as few as 28
matches.

Introduction
Evaluating an agent’s performance in stochastic settings can
be hard. Non-zero variance in outcomes means the game
must be played multiple times to compute a confidence in-
terval that likely contains the true expected value. Regard-
less of whether the variance arises from player actions or
from chance events, we might need to observe many sam-
ples before we get a narrow enough interval to draw desir-
able conclusions. In many situations, it is simply not feasible
(e.g., when the evaluation involves human participation) to
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simply observe more samples, so we must turn to statistical
techniques that use additional information to help narrow the
confidence interval.

This agent evaluation problem is commonly encountered
in games, where the goal is to estimate the expected perfor-
mance difference between players. For example, consider
poker games. Poker is not only a long-standing challenge
problem for AI (von Neumann 1928; Koller and Pfeffer
1997; Billings et al. 2002) with annual competitions (Zinke-
vich and Littman 2006; Annual Computer Poker Competi-
tion ), but also a very popular game played by an estimated
150 million players worldwide (Eco 2007). Heads-up no-
limit Texas hold’em (HUNL) is a particular variant of the
game that has received considerable attention in the AI com-
munity in recent years, including a “Brains vs. AI” event pit-
ting Claudico (Brains Vs. AI 2015), a top HUNL computer
program, against professional poker players. This match in-
volved 80,000 hands of poker with four poker players play-
ing dozens of hours each over thirteen days. Despite Clau-
dico losing by over 9 big blinds per 100 hands (a margin that
is considered “huge” by poker professionals (Wood 2015)),
the result is only on the edge of statistical significance, mak-
ing it hard to draw a conclusion from this large investment
of human time.

Even more recently, two more man-machine competitions
were held in close succession. Over a period of four weeks
between November 7th and December 12th 2016, Deep-
Stack played a pool of professional poker players recruited
by the International Federation of Poker. Soon after, Libratus
played a team of four professional heads-up poker special-
ists in a HUNL competition held January 11-30, 2017. While
both computer agents were victorious versus their respective
opponents, these two competitions serve as canonical exam-
ple of the importance of strong variance reduction.

The DeepStack competition used the techniques de-
scribed in this paper. The Libratus competition used more
basic variance reduction methods. As a result, the DeepStack
competition was able to achieve statistically significant re-
sults on individual participants with only a few hours of play.
In comparison, Libratus required full days from the partici-
pants for nearly three straight weeks to achieve a result just
for the aggregation of all of the players.

Previous techniques for variance reduction in this set-
ting have used two broad classes of statistical techniques.



Techniques like MIVAT (White and Bowling 2009) use the
method of control variates with heuristic value estimates to
reduce the variance caused by chance events. The technique
of importance sampling over imaginary observations (Bowl-
ing et al. 2008) takes a different approach, using knowledge
of a player strategy to evaluate multiple states given a single
observation. Imaginary observations can be used to reduce
the variance caused by privately observed chance events, as
well as the player’s random choice whether to make any ac-
tions which would immediately end the game.

Techniques from the two classes can be naively com-
bined, but are not specifically designed to work together for
the greatest reduction in variance, and neither of the tech-
niques deal with the variance caused by non-terminal ac-
tion selection. Because good play in imperfect information
games generally requires randomised action selection, ig-
noring action variance is an major shortcoming. We intro-
duce the action-informed value assessment tool (AIVAT), an
unbiased low-variance estimator for imperfect information
games which extends the use of control variates to player
actions, and makes explicit use of imaginary observations to
exploit knowledge of the game structure and player strate-
gies.

Background
This paper focuses on variance reduction when evaluating
agents for extensive form games, a class of imperfect infor-
mation sequential decision making problems. Formally, an
extensive form game involves a set of players P and chance
player pc, a set of states S described as a history of actions
from the initial state ∅, a set Z ⊂ S of terminal states, act-
ing player p(h) : S \ Z 7→ P

⋃
{pc}, player value func-

tions vp(z) : Z 7→ R, and information partitions Ip of
{h ∈ S|p(h) = p}. We will say h @ h′ if a game in state h′
was previously in state h, h v h′ if h @ h′ or h = h′, A(h)
is the set of valid actions at h, and h · a is the successor state
of h that is reached by making action a. For all states h such
that p(h) = pc, σpc

(h, a) is the publicly known probability
distribution over possible chance outcomes at state h.

An information set I ∈ Ip describes a set of states
that player p can not distinguish due to imperfect infor-
mation of the game state. Any player decision is therefore
made at information sets, not states. A behaviour strategy
σp(I, a) gives the probability of player p making decision
a at information set I . The behaviour in a state is deter-
mined by the information set I , so that ∀h ∈ I σp(h, a) =
σp(I, a). We will say the probability of reaching a state
h is π(h) = Πh′·aσp(h′)(h

′, a). It is also useful to con-
sider πp(h) = Πh′·avh,p(h′)=pσp(h′, a), the probability of
a player reaching state h if all other players play to reach h.
This notation can be extended so that for any set of players
T , πT (h) = Πp∈Tπp(h).

When talking about estimating the value for players in a
game, we are trying to find the expected value Ez[vp(z)] =∑

z∈Z π(z)vp(z). An estimator e(z) is said to be unbiased if
the expected value Ez[e(z)] = Ez[vp(z)]. Having an estima-
tor be provably unbiased is important because it is in some
sense truthful: a player can not appear to do better by chang-

ing their play to take advantage of the estimation method.

MIVAT and Imaginary Observations
AIVAT is an extension of two earlier techniques, MIVAT
and importance sampling over imaginary observations. MI-
VAT (White and Bowling 2009) and its precursor DI-
VAT (Zinkevich et al. 2006) use value functions for a con-
trol variate that estimates the expected utility given observed
chance events. Conceptually, the techniques subtract the
change in expected utility due to a chance action to get a
lower variance value. For example, in poker, it is likely that
good hands end in positive outcomes and bad hands end in
negative outcomes. Starting with the observed outcome, we
could subtract some value for good hands and add a value
for bad hands, and we would expect the corrected value to
have lower variance. If the expected value of the correction
terms is zero, we can use the lower variance corrected value
as an unbiased estimator of player value.

DIVAT requires a strategy for all players to generate value
estimates for states through self-play, while MIVAT gener-
alized the approach by allowing for arbitrary value func-
tions defined after chance events. Both add a correction term
for each chance event in an observed state. In order to re-
main unbiased despite using an arbitrary value estimation
function u(o), MIVAT uses a correction term of the form
Eo[u(o)] − u(o) for an observation with outcome o. Com-
puting this expectation requires us to know the probability
distribution that o was drawn from, which is true in the case
of chance events as σpc is public knowledge. These terms
are guaranteed to have an expected value of zero, making
the MIVAT value (observed value plus correction terms) an
unbiased estimate of player value. In a game like poker, MI-
VAT will account for the dealer giving a player favourable or
unfavourable cards, but not for lucky player actions selected
from a randomised strategy.

Imaginary observations with importance sampling (Bowl-
ing et al. 2008) uses knowledge of a player’s strategy to
compute an expected value of multiple states given an obser-
vation of a single state. Due to imperfect information, there
may be many states which are all guaranteed to have the
same probability of the opponent making their actions. If
we consider importance sampling over these imaginary ob-
servations, the opponent’s probability of reaching the state
cancels out so we do not need to know the opponent’s strat-
egy. By taking an expectation over a set of states for every
observation, we expect a lower variance value.

There are two kinds of situations where we can use imag-
inary observations. First, for any states h where player p
could have made an action a which ends the game, we can
add the imaginary observation of the terminal state h ·a. For
example, in poker this lets us consider player p folding to a
bet they called or raised, or calling a bet we folded to in the
final round. Second, because of the information partitions in
imperfect information games, there may be other states that
have identical opponent probabilities. In poker, this lets us
consider all the states where the public player actions are
the same, the opponent private cards and public board cards
are the same, but player p has different private cards. Imag-
inary observations do not let us reduce the variance caused



by choosing non-terminal actions or the outcomes of pub-
licly visible chance events.

MIVAT and imaginary observations consider different in-
formation and can be combined to get a value estimate with
lower variance than either technique used individually. In-
stead of using the terminal value v(z) for an imaginary ob-
servation z, we could use the MIVAT value estimate given
z. However, because neither technique has terms which ad-
dress the effect of non-terminal actions, we would never ex-
pect this combination of techniques to produce a zero vari-
ance value estimate. Even with a “perfect” value function
that correctly estimates the expected value of a state and ac-
tion for the players, there would still be some variance in the
value estimate due to random action selection by players.

AIVAT
Conceptually, AIVAT combines the chance correction terms
of MIVAT with imaginary observations across private in-
formation, along with new MIVAT-like correction terms for
player actions. The AIVAT estimator is the sum of a base
value using imaginary observations, plus imaginary obser-
vation correction terms for both player actions and chance
events. Roughly speaking, moving backwards through the
choices in an observed game, the AIVAT correction terms
are constructed in a fashion that shifts an estimate of the ex-
pected value after a choice was made towards an estimate of
the expected value before the choice.

Because imaginary observations with importance sam-
pling provides an unbiased estimate of the expected value
of the players, and the MIVAT-like terms have an expected
value of zero, AIVAT is also an unbiased estimator of the
expected player value. Furthermore, with well-structured
games, “perfect” value functions, and knowledge of all
player strategies, we could achieve zero variance estimators:
the imaginary observation values and the correction terms
would sum to the expected player value, regardless of the
observed game.

Figure 1 gives a high level overview of MIVAT, imagi-
nary observations, and AIVAT. In this example, we are in-
terested in the expected value for player 1, and know player
1’s strategy. We use an observation of one hand of Leduc
hold’em poker, a small synthetic game constructed for re-
search (Southey et al. 2005). Leduc hold’em is a two round
game with one private card for each player, and one pub-
licly visible board card that is revealed after the first round
of player actions. In the example, player 1 is dealt Q♠ and
player 2 is dealt K♠. Player 1 makes the check action fol-
lowed by a player 2 check action. The public board card
is revealed to be J♥. There are three actions in round two:
check, raise, call ; and player 1 loses 5 chips.

AIVAT Correction Terms
We start by describing the correction terms added for chance
events and actions. Given information about a player’s strat-
egy, we can treat that player’s choice events as chance events
and construct MIVAT-like correction terms for them. The
player strategy also allows imaginary observations consid-
ering alternative histories with identical opponent probabili-
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Figure 1: Comparison of MIVAT, imaginary observations,
and AIVAT

ties, so we can compute an expectation over a set of compat-
ible histories rather than using the single observed outcome.

The correction term at a decision point will be the expec-
tation across all compatible histories of the expected value
before a choice, minus the value after the observed choice.
As with MIVAT, the values are estimated using an arbitrary
fixed value function to estimate the value after every deci-
sion. Value estimates which more closely approximate the
true expected value will result in greater variance reduction.

To consider imaginary observations, we need at least one
player for which we know the strategy. Let Pa be a non-
empty set of players, including pc, such that ∀p ∈ Pa we
know σp, and Po = P \ Pa be the set of opponent players
for which we do not know the strategy. If Pa = {pc} then
AIVAT would be identical to MIVAT. We must also parti-
tion the states into the sets we can evaluate given an obser-
vation of a completed game. Let H be a partition of states
{h|p(h) ∈ Pa} such that ∀H ∈ H and ∀h, h′ ∈ H ,

1. ∀p ∈ Po ∀σp πp(h) = πp(h′). For example, this can be
enforced by requiring h and h′ to pass through the same
sequence of player p information sets and make the same
actions at those information sets.

2. h 6@ h′. This implies a uniqueness property, where for
any terminal z, {h′′|h′′ @ z, h′′ ∈ H} is either empty or
a singleton.

3. We will extend the actions so thatA′(h) =
⋃

h′′∈H A(h′′)
and let σ(h, a) = 0 ∀a ∈ A′(h)\A(h). Because A′(h) =
A′(h′) we will say A(H) = A′(h).

Similar to MIVAT, we need value functions that give an
estimate of the expected value after an action. Let there be
arbitrary functions uh(a) : A′(h) 7→ R for each state h
where p(h) ∈ Pa. Say we have seen a terminal state z. Con-
sider a part H ∈ H. If @h ∈ H such that h @ z, then
the correction term kH(z) = 0. Otherwise, property 2 of
H implies there is a unique observed action aO such that



h · aO v z, h ∈ H, aO ∈ A(h), and the correction term is

kH(z) =

∑
a∈A(H)

∑
h∈H πPa

(h · a)uh(a)∑
h∈H πPa(h)

−
∑

h∈H πPa
(h · aO)uh(aO)∑

h∈H πPa
(h · aO)

AIVAT uses the sum of kH(z) across all H ∈ H.

AIVAT Base Value
The AIVAT correction terms have an expected value of zero,
and are not a value estimate by themselves. They must be
combined with an unbiased estimate of player value. For im-
proved variance reduction, the form of the correction terms
must match the choice of base value estimate.

To see how the terms match, consider a simplified ver-
sion of AIVAT where the final correction term for a terminal
state h ·o has the form Ea[uh(a)]−uh(o). Ideally, we would
like the value estimate for h · a to be uh(a). The value esti-
mate plus the correction term will then have the same value
Ea[uh(a)] for all actions at h, resulting in zero variance.

For the AIVAT correction terms, the correct choice is to
use imaginary observations of all possible private informa-
tion for players in Pa, as in “Example 3: Private Informa-
tion” of the paper by Bowling et al. (Bowling et al. 2008).
In poker, it corresponds to evaluating the game with all pos-
sible private cards, weighted by the likelihood of holding
the cards given the observed game. For completeness, we
formally describe the particular instance of this existing es-
timator using the notation of this paper.

Given the correction term partitionH of player Pa states,
we construct a matching partitionW of terminal states such
that ∀W ∈ W and ∀z, z′ ∈W ,
• ∀p ∈ Po ∀σp πp(z) = πp(z′).
• a player in Pa made an action in z ⇐⇒ a player in Pa

made an action in z′.
• if a player in Pa made an action in z, then for the longest

prefix h @ z and h′ @ z′ such that p(h) ∈ Pa and p(h′) ∈
Pa, both h and h′ are in the same part ofH.

The last two conditions onW ensure that the imaginary ob-
servation estimate does not include terminal states that the
correction terms will also account for. This rules out a form
of double counting which would not produce a biased es-
timator, but would increase the variance when using high
quality estimates in the correction terms.

If we observe a terminal state z, let W ∈ W be the part
such that z ∈W . The base estimated value for player p is∑

z′∈W πPa
(z′)vp(z′)∑

z′∈W πPa(z′)

AIVAT Value Estimate
The AIVAT estimator gives an unbiased estimate of the ex-
pected value Ez[vp(z)]. If we use partitions H and W as
described above, and are given an observation of a terminal
state z ∈W ∈ W , the value estimate is

AIVAT(z) =

∑
z′∈W πPa(z′)vp(z′)∑

z′∈W πPa
(z′)

+
∑
H∈H

kH(z) (1)

Note that there is a subtle difference between AIVAT and
a simple combination of imaginary observations with an ex-
tended MIVAT framework using player strategy informa-
tion to add control variates for actions. Using extended MI-
VAT plus imaginary observations, we would consider the ex-
pected MIVAT value estimate across all terminal histories
compatible with the observed terminal state. In AIVAT, for
each correction term we would consider all histories com-
patible with the state at that decision point.

As a concrete example of the difference, consider the
game used in Figure 1. MIVAT with imaginary observations
would only consider private cards for player 1 that do not
conflict with the opponent’s K♠ or the public card J♥, even
when computing the E[u(c)] − u(J♥) control variate term
for the public card. In contrast, AIVAT considers J♥ as a
possible player card for the term.

Unbiased Value Estimate

It is desirable to have an unbiased value estimate for games,
so that players can not improve their estimated value by
changing their strategy to fit the estimation technique. We
prove that AIVAT is unbiased. The value estimate AIVAT(z)
in Equation 1 is a sum of two parts. The fraction in the first
part is an unbiased estimator based on imaginary observa-
tions (Bowling et al. 2008), so we only need to show that
the sum of all kH terms has an expected value of 0.

Lemma 1 ∀H ∈ H Ez∈Z [kH(z)] = 0

Proof. Consider an arbitrary H ∈ H. Let Z(H) = {z ∈
Z|∃h ∈ H,h @ z} be the set of terminal states passing
through H . Expanding definitions, using property 1 of H
and multiplying by πPo(H)/πPo(H) = 1 we get

E
z∈Z

[kH(z)] =
∑
z∈Z

π(z)kH(z) =
∑

z∈Z(H)

π(z)kH(z)

=
∑

z∈Z(H)

π(z)
πPo

(H)

πPo
(H)

∑
a∈A(H)

∑
h∈H πPa

(h · a)uh(a)∑
h∈H πPa

(h)

−
∑

z∈Z(H)

π(z)
πPo

(H)

πPo
(H)

∑
h∈H πPa

(h · aO)uh(aO)∑
h∈H πPa

(h · aO)

Using πPo
(h)πPa

(h) = π(h)

=
∑

z∈Z(H)

π(z)

∑
a∈A(H)

∑
h∈H π(h · a)uh(a)∑
h∈H π(h)

−
∑

z∈Z(H)

π(z)

∑
h∈H π(h · aO)uh(aO)∑

h∈H π(h · aO)



Using
∑

z,h@z π(z) = π(h) and
∑

z,h·a@z π(z) = π(h · a)

=
∑
h′∈H

π(h′)

∑
a∈A(H)

∑
h∈H π(h · a)uh(a)∑
h∈H π(h)

−
∑
h′∈H

∑
a∈A(h′)

π(h′ · a)

∑
h∈H π(h · a)uh(a)∑

h∈H π(h · a)

Using property 3 ofH

=
∑
h′∈H

π(h′)

∑
a∈A(H)

∑
h∈H π(h · a)uh(a)∑
h∈H π(h)

−
∑

a∈A(H)

∑
h′∈H

π(h′ · a)

∑
h∈H π(h · a)uh(a)∑

h∈H π(h · a)

=
∑

a∈A(H)

∑
h∈H

π(h · a)uh(a)−
∑

a∈A(H)

∑
h∈H

π(h · a)uh(a)

= 0

Because the expected value is 0 for an arbitrary H , the ex-
pected value is 0 for the sum of all H ∈ H.

Theorem 1 Ez∈Z [
∑

H∈H kH(z)] = 0

Proof. This immediately follows from Lemma 1, as the ex-
pected value of a sum of terms is the sum of the expected
values of the terms, which are all 0.

Experimental Results
We demonstrate the effectiveness of AIVAT in two poker
games, Leduc hold’em and heads-up no-limit Texas hold’em
(HUNL). Both Leduc hold’em and HUNL have a convenient
structure where all actions are public, and there is a mix of
chance events in the form of completely public board cards
and completely private hole cards. The uncomplicated struc-
ture leads to a clear choice for the partitionH. Each H ∈ H
has states with identical betting, public board cards, and pri-
vate hole cards for any players in Po.

For the first experiments where we compare against previ-
ous techniques, the value functions uh(a) are self-play val-
ues, generated by solving the game to find a Nash equilib-
rium strategy using a variant of the Monte Carlo CFR al-
gorithm (Lanctot et al. 2009). For each player px and par-
tition H , we save the average observed values for oppo-
nent py across all iterations, giving us a value wH(a) ≈∑

h∈H πpx
(h · a)E[vpy

(h)]/
∑

h∈H πpx
(h · a). wH(a) is

an expected self-play value for py at H , given the proba-
bility distribution of hands for px that reach H and play a.
Because we are playing a zero-sum game and vpx

(h) =
−vpy

(h), we can use uh(a) = −wH(a) ∀h ∈ H . In
HUNL, which is too large to solve directly, we solve a
very small abstraction of the game (Billings et al. 2003;
Ganzfried and Sandholm 2014) with only 8 million infor-
mation sets, which gives us a rough estimate of wH(a) that
is identical across many partitions of HUNL states.

Poker is played in an alternating fashion, where agents
take turns playing in different positions. Let us say we have

two agents, x and y. In poker, in odd-numbered games (start-
ing at game 1) we would have x as player 1 and y as player
2, and in even-numbered games we would have y as player 1
and x as player 2. For the experiments, we model this as an
extended game where there is an initial 50/50 chance event
that assigns a position to the agent, along with an AIVAT
correction term for the position.

All experiments will compare AIVAT value estimates
with the unmodified game values from counting chips, the
MIVAT value estimate, and the combination of MIVAT
and imaginary observations using the strategy for agent x
(MIVAT+IOx). Because poker is a zero-sum game, it is suf-
ficient to present results from the point of view of agent x.

Leduc Hold’em
The small size of Leduc hold’em lets us test both the case
where Pa only contains one non-chance player, as well as
the full-knowledge case where Pa = P . AIVAT and chip
count results are generated from observations of 100,000
games. All of the numbers are in units of chips, where Leduc
hold’em has a 1 chip ante, and 2 chip and 4 chip bets in the
first and second rounds, respectively.

Table 1 looks at self-play, where both x and y play the
same Nash equilibrium that was used to generate uh(a). The
true expected value for player x is 0. Because we are using
value functions computed from their self-play, this exper-
iment represents a best-case situation. With knowledge of
both player’s strategies, the only remaining variance comes
from noise in the uh(a) value function that arises from the
sampling and averaging used in the MCCFR computation.

Estimator v̄x SD(vx)
chips 0.01374 3.513
MIVAT 0.00448 2.327
MIVAT+IOx 0.00987 1.928
Pa = {pc, x} -0.00009 0.00643
Pa = {pc, x, y} -0.00001 0.00377

Table 1: Value estimates for self-play in Leduc hold’em

With knowledge of both player’s strategies, we reduce the
per-game standard deviation of the estimated player value
by a little less than 99.9%. This situation might be unlikely
in practice, but does demonstrate that the AIVAT computa-
tion correctly shifts every observed outcome to the expected
player value, given full correct information. Surprisingly, the
one-sided evaluation where we use only one player’s strat-
egy still reduces the standard deviation by 99.8%. Using MI-
VAT or MIVAT+IOx, we only see a 33.8% and 45.1% reduc-
tion, respectively.

Moving away from the best-case situation, Figure 2 looks
at games where x is the same Nash equilibrium from above,
and y is an agent that randomly calls or raises. Given these
strategies, the true expected value for player x is 0.69358.

Using the call/raise strategy for y demonstrates that the
amount of variance reduction does depend on how well the
value functions estimate the true expected value of a situa-
tion. We used value functions which encode self-play values
for x, and while y is sufficiently similar to x that the true



Estimator v̄x SD(vx)
chips 0.71673 5.761
MIVAT 0.68932 4.412
MIVAT+IOx 0.69968 4.295
Pa = {pc, x} 0.69050 1.437
Pa = {pc, x, y} 0.68698 1.782
Pa = {pc, y} 0.69614 2.983

Table 2: Value estimates for dissimilar strategies in Leduc
hold’em

values are still positively correlated with the estimated val-
ues for both players, they are no longer an almost-perfect
match. Despite the strategic mismatch, using AIVAT we see
a reduction in the standard deviation of 48% to 75% com-
pared to the basic chip-count estimate. All of the AIVAT es-
timators outperform the 25% reduction using MIVAT plus
imaginary observations.

No-limit Texas Hold’em with Bots
The game of HUNL better represents a potential real-world
application. The game is commonly played, it is too large
to easily compute exact expected values directly even when
the strategy of both agents is known, average win rate is a
statistic of interest to players and observers, and the high
per-game variance of outcomes obscures the win rate even
after hundreds of thousands of hands.

First, we used data generated by small abstraction-based
CFR agents to compare AIVAT to prior techniques. The next
section of this paper presents our main results - AIVAT eval-
uation on human experimental data in this challenging game.

Comparison to previous techniques The variant of
HUNL we used here is know as the “Doyle’s game” (to
be briefly described in the next section). Due to the large
branching factor of chance events, we can only present re-
sults for AIVAT analysis using the strategy of one agent.

First, we look at self-play using a low-quality Nash equi-
librium approximation for both players x and y. The value
functions uh(a) come from this low-quiliaty strategy. Ta-
ble 3 compares the different techniques.

Estimator v̄x SD(vx)
chips 0.03871 25.962
MIVAT 0.02038 21.293
MIVAT+IOx 0.02596 16.073
Pa = {pc, x} 0.00186 8.095

Table 3: Selfplay value estimates for self-play in HUNL us-
ing 1 million data points. Note that the true expected value
for x is 0 since this is in self-play.

In Table 4 we look at games where x uses the same low-
quality approximation of a Nash equilibrium, and y is a
much stronger agent using a high-quality approximation of a
Nash equilibrium. The value functions uh(a) are still gener-
ated using the low-quality approximation. The true expected
value for player x is not known.

Estimator v̄x SD(vx)
chips -0.10017 26.308
MIVAT -0.11565 21.546
MIVAT+IOx -0.11297 16.051
Pa = {pc, x} -0.10971 8.301

Table 4: Value estimates for dissimilar strategies in HUNL
using 1 million data points.

In both experiments, we see a 39% reduction in the stan-
dard deviation when using MIVAT with imaginary observa-
tions, and a bit more than a 68% reduction using AIVAT. It
must be noted that our value function could be improved,
as the 18% reduction for MIVAT in this experiment does
not match the 23% improvement previously demonstrated
using values learned from data (White and Bowling 2009).
The small abstract game used to generate the value functions
does not do a good job of understanding the consequences
of cards being dealt, as it cannot distinguish most card situ-
ations. Despite this handicap, the full AIVAT estimator still
significantly improves on the state of the art for low-variance
value estimators for imperfect information games

No-limit Texas Hold’em with Humans
We used AIVAT variance reduction to evaluate the game-
play of DeepStack, the first poker AI to beat professional
human players in no-limit poker. DeepStack recently played
two man-machine events with different game rules.

The first format, referred to as “Doyle’s Game” is a pop-
ular variant amongst the computer poker community — all
the previously held man machine competitions (Brains Vs.
AI 2015) used this particular game format. This format was
used during the DeepStack evaluation: 33 players from 17
different countries were recruited by the International Fed-
eration of Poker. The players were asked to complete 3, 000
games each, producing a total of 44, 852 games (not all the
players finished the required number of games).

The second format used for evaluation was series of exhi-
bition matches in the “freezeout” poker tournament format,
where chips are not reset after each game, and a match con-
tinues until one player is out of chips. While much more
challenging for AI, this format is very popular by players.

Doyle’s Game
In Doyle’s Game, the number of players’ chips gets reset
after every single game, and the goal is to maximize the total
amount of chips won in the course of multiple games. Thus,
the estimate we are interested in is the expected number of
chips won per game.

Based on the aggregate results, DeepStack won the chal-
lenge statistically significantly by 4 sigma even with no vari-
ance reduction. AIVAT analysis was able to improve the sta-
tistical analysis, reducing the standard deviation by 85% and
producing 20 sigma significance. Even more impressively,
AIVAT resulted in a statistically significant outcome for all
but one of the individuals who finished the required number
of hands. Concretely, AIVAT estimated that DeepStack was
ahead of all 11 players that completed the challenge, and



these individual victories were 2 sigma significant for all but
one of them. More details are presented in Table 5.

Note that the 85% standard deviation reduction achieved
by DeepStack value estimates is substantially lower than the
68% reduction using estimates from the CFR abstraction-
based agent. This suggests that DeepStack has a better un-
derstanding of the game values compared to the abstraction
based approaches.

Table 5: Results against professional poker players esti-
mated with AIVAT (Luck Adjusted Win Rate) and chips
won (Unadjusted Win Rate), both measured in mbb/g. Note
that 10mbb/g equals 1bb/100. Each estimate is followed by a
95% confidence interval. The double line separates the play-
ers that did not finish the required number of 3, 000 hands.
Note that for most of the players that finished the match and
even for many players that played too few games to fin-
ish, the AIVAT produces per-player statistically significant
results. This contrasts to other man-machine competitions,
where only the aggregate data from all players had to be
used to get significant results.

Player Luck Adjusted
Win Rate

Unadjusted
Win Rate

Martin Sturc 70 ± 119 −515 ± 575
Stanislav Voloshin 126 ± 103 −65 ± 648
Prakshat Shrimankar 139 ± 97 174 ± 667
Ivan Shabalin 170 ± 99 153 ± 633
Lucas Schaumann 207 ± 87 160 ± 576
Phil Laak 212 ± 143 774 ± 677
Kaishi Sun 363 ± 116 5 ± 729
Dmitry Lesnoy 411 ± 138 −87 ± 753
Antonio Parlavecchio 618 ± 212 1096 ± 962
Muskan Sethi 1009 ± 184 2144 ± 1019

Pol Dmit 1008 ± 156 883 ± 793
Tsuneaki Takeda 627 ± 231 −333 ± 1228
Youwei Qin 1306 ± 331 1953 ± 1799
Fintan Gavin 635 ± 278 −26 ± 1647
Giedrius Talacka 1063 ± 338 459 ± 1707
Juergen Bachmann 527 ± 198 1769 ± 1662
Sergey Indenok 881 ± 371 253 ± 2507
Sebastian Schwab 1086 ± 598 1800 ± 2162
Dara O’Kearney 78 ± 250 223 ± 1688
Roman Shaposhnikov 131 ± 305 −898 ± 2153
Shai Zurr 499 ± 360 1154 ± 2206
Luca Moschitta 444 ± 580 1438 ± 2388
Stas Tishekvich −45 ± 433 −346 ± 2264
Eyal Eshkar 18 ± 608 715 ± 4227
Jefri Islam 997 ± 700 3822 ± 4834
Fan Sun 531 ± 774 −1291 ± 5456
Igor Naumenko −137 ± 638 851 ± 1536
Silvio Pizzarello 1500 ± 2100 5134 ± 6766
Gaia Freire 369 ± 136 138 ± 694
Alexander Bös 487 ± 756 1 ± 2628
Victor Santos 475 ± 462 −1759 ± 2571
Mike Phan −1019 ± 2352 −11223 ± 18235
Juan Manuel Pastor 2744 ± 3521 7286 ± 9856

Human Professionals 486 ± 40 492 ± 220

Freezouts
In a freezout tournament, players’ chips don’t reset after ev-
ery hand, but the game continues until one of the players
loses all of their chips, thus losing the tournament. Conse-
quently, a tournament is a single Bernoulli trial and we are
interested in an estimate of the win probability (in contrast
to chips won per hand in Doyle’s game).

It turns out that the AIVAT technique can readily be ap-
plied in these settings as well. We simply use a value esti-
mate corresponding to an estimate of the win probability. We
opted for the ICM formulae (Ganzfried and Sandholm 2008)
to estimate win probability from the players’ chips since it
has been shown to be very accurate for heads-up (Miltersen
and Sørensen 2007). In the case of two players p1 and p2 it
simplifies down to:

ICM(chipsp1 , chipsp2) =
chipsp1

chipsp1 + chipsp2

(2)

Note that since we use this formula only for the value es-
timate for the correction terms, the formula can be arbitrary
and still be unbiased. But a better estimate of the real win
probability leads to lower variance.

Since DeepStack does not use pre-computed strategy but
rather computes the strategy online, it is not limited to a fixed
amount of chips and thus can readily play freezout games.
DeepStack was used for another experiment versus human
poker players, this time in a freezout setting and AIVAT was
used to reduce the variance. The resulting values are in the
Table 6 and AIVAT was able to produce statistically signif-
icant results with as little as 28 freezout matches, while the
baseline estimate from 14 wins and 14 losses provided no
separation in the estimated skill.

Estimator 95% conf. interval
Bernoulli 0.5± 0.2
AIVAT 0.59± 0.018

Table 6: Freezout results.

Conclusions
We introduced a technique for value estimation in imper-
fect information games that extends and combines existing
techniques. AIVAT uses heuristic value functions, knowl-
edge of game structure, and knowledge about player strate-
gies to both add a control variate term for chance and player
decisions, and to average over multiple possible outcomes
given a single observation. We prove AIVAT is unbiased,
and demonstrate that with (almost) perfect value functions
we see (almost) complete elimination of variance. Even with
imprecise value functions, we show variance reduction in
a real-world game that significantly exceeds existing tech-
niques. AIVAT’s three times reduction in standard deviation
allows us to achieve the same statistical significance with ten
times less data.

A factor of forty is substantial: for problems with lim-
ited data, like human play against bots, forty times as many
games could be the distinction between practical and im-
practical experiments.
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