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Abstract

Many real world security problems can be modelled
as finite zero-sum games with structured sequential
strategies and limited interactions between the play-
ers. An abstract class of games unifying these models
are the normal-form games with sequential strategies
(NFGSS). We show that all games from this class can
be modelled as well-formed imperfect-recall extensive-
form games and consequently can be solved by coun-
terfactual regret minimization. We propose an adapta-
tion of the CFR+ algorithm for NFGSS and compare
its performance to the standard methods based on lin-
ear programming and incremental game generation. We
validate our approach on two security-inspired domains.
We show that with a negligible loss in precision, CFR+

can compute a Nash equilibrium with five times less
computation than its competitors.

Game theory has been recently used to model many real
world security problems, such as protecting airports (Pita et
al. 2008) or airplanes (Tsai et al. 2009) from terrorist at-
tacks, preventing fare evaders form misusing public trans-
port (Yin et al. 2012), preventing attacks in computer net-
works (Durkota et al. 2015), or protecting wildlife from
poachers (Fang, Stone, and Tambe 2015). Many of these se-
curity problems are sequential in nature. Rather than a single
monolithic action, the players’ strategies are formed by se-
quences of smaller individual decisions. For example, the
ticket inspectors make a sequence of decisions about where
to check tickets and which train to take; a network adminis-
trator protects the network against a sequence of actions an
attacker uses to penetrate deeper into the network.

Sequential decision making in games has been exten-
sively studied from various perspectives. Recent years have
brought significant progress in solving massive imperfect-
information extensive-form games with a focus on the game
of poker. Counterfactual regret minimization (Zinkevich et
al. 2008) is the family of algorithms that has facilitated much
of this progress, with a recent incarnation (Tammelin et al.
2015) essentially solving for the first time a variant of poker
commonly played by people (Bowling et al. 2015). How-
ever, there has not been any transfer of these results to re-
search on real world security problems.
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We focus on an abstract class of sequential games that can
model many sequential security games, such as games tak-
ing place in physical space that can be discretized as a graph.
This class of games is called normal-form games with se-
quential strategies (NFGSS) (Bosansky et al. 2015) and it in-
cludes, for example, existing game theoretic models of ticket
inspection (Jiang et al. 2013), border patrolling (Bosansky et
al. 2015), and securing road networks (Jain et al. 2011).

In this work we formally prove that any NFGSS can
be modelled as a slightly generalized chance-relaxed skew
well-formed imperfect-recall game (CRSWF) (Lanctot et al.
2012; Kroer and Sandholm 2014), a subclass of extensive-
form games with imperfect recall in which counterfactual
regret minimization is guaranteed to converge to the optimal
strategy. We then show how to adapt the recent variant of
the algorithm, CFR+, directly to NFGSS and present exper-
imental validation on two distinct domains modelling search
games and ticket inspection. We show that CFR+ is appli-
cable and efficient in domains with imperfect recall that are
substantially different from poker. Moreover, if we are will-
ing to sacrifice a negligible degree of approximation, CFR+

can find a solution substantially faster than methods tradi-
tionally used in research on security games, such as formu-
lating the game as a linear program (LP) and incrementally
building the game model by double oracle methods.

Game Model

NFGSS is a class of two-player zero-sum sequential games
in which each player i’s strategy space has the structure of a
finite directed acyclic Markov decision process (MDP) with
the set of states Si, set of actions Ai and a stochastic transi-
tion function T : Si ×Ai → ∆(Si). The transition function
defines the probability of reaching next states after an action
is executed in the current state. We denote by ∆(·) a set of
probability distributions over a set; A(si) ⊆ Ai the actions
applicable in state si; and s0

i the initial state of the MDP.
A player’s strategy is a probability distribution over ac-

tions applicable in each state. We denote δi(si, ai) to be the
probability that a player following strategy δi reaches state
si and then executes action ai. An important restriction in
this class of games is that the utility is defined in terms of
marginal utilities for simultaneously executed state-action
pairs (si, ai) ∈ Si × Ai by the players. The first player’s



(negative of second player’s) expected utility has the form:

u(δ1, δ2) =
∑

S1×A1

∑
S2×A2

δ1(s1, a1)δ2(s2, a2)U((s1, a1), (s2, a2))

for some U : S1 ×A1 × S2 ×A2 → R.

Background
In this paper, we show that the games from NFGSS can be
transformed to a previously studied subclass of extensive-
form games with imperfect recall. This section defines the
concepts required to understand this transformation.

Extensive-form games
Two-player extensive-form games model sequential deci-
sion making of players denoted i ∈ N = {1, 2}. In turn,
players choose actions leading to sequences called histories
h ∈ H . A history z ∈ Z, where Z ⊆ H , is called a terminal
history if it represents a full game from start to end. At each
terminal history z there is a payoff ui(z) to each player i. At
each nonterminal history h, there is a single current player to
act, determined by P : H\Z → N ∪{c}where c is a special
player called chance that plays with a fixed known stochas-
tic strategy. For example, chance is used to represent rolls of
dice and card draws. The game starts in the empty history
∅, and at each step, given the current history h, the current
player chooses an action a ∈ A(h) leading to successor his-
tory h′ = ha. We call h a prefix of h′, denoted h v h′, and
generalize this relation to its transitive and reflexive closure.

Set Ii is a partition over Hi = {h ∈ H : P (h) = i}
where each part is called an information set. An information
set I ∈ Ii of player i is a set of histories that a player cannot
tell apart (due to information hidden from that player). For
all h, h′ ∈ I , A(h) = A(h′) and P (h) = P (h′); hence,
we extend the definition to A(I), P (I), and denote I(h)
the information set containing h. Let X(h) be the set of
information set and action pairs on the path from the root
of the game to history h ∈ H; Xi(h) ⊆ X(h) be only
the pairs where player i chooses an action; and Xi(h, z)
only the pairs i chooses on the path from h to z. A game
has perfect recall, if players remember all actions they took:
∀i ∈ N ∀h ∈ Hi ∀h′ ∈ I(h) Xi(h

′) = Xi(h). If this
condition does not hold, the game has imperfect recall. In
this paper we don’t consider a form of imperfect recall often
called absent mindedness, in which a history and a prefix of
that history may be contained in the same information set.

A behavioral strategy for player i is a function map-
ping each information set I ∈ Ii to a probability distribu-
tion over the actions A(I), denoted by σi(I). For a pro-
file σ = (σ1, σ2), we denote the probability of reaching a
terminal history z under σ as πσ(z) =

∏
i∈N∪{c} π

σ
i (z),

where each πσi (z) =
∏
havz,P (h)=i σi(I(h), a) is a product

of probabilities of the actions taken by player i along z. We
use πσi (h, z) and πσ(h, z) for h v z to refer to the product
of only the probabilities of actions along the sequence from
the end of h to the end of z. We define Σi to be the set of be-
havioral strategies for player i and extend the utility function
to strategy profiles as ui(σ) =

∑
z∈Z π

σ(z)ui(z). By con-
vention, −i refers to player i’s opponent and chance player,
or just the opponent if the context does not admit chance.

An ε-Nash equilibrium, σ, is a strategy profile such that
the benefit of switching to some alternative σ′i is limited
by ε, i.e., ∀i ∈ N : maxσ′i∈Σi

ui(σ
′
i, σ−i) − ui(σ) ≤ ε.

When ε = 0, the profile is called a Nash equilibrium. We
focus on zero-sum games, where u2(z) = −u1(z) and de-
fine precision of a profile σ as the sum of strategies’ dis-
tances from an equilibrium, εσ = maxσ′1∈Σ1

u1(σ′1, σ2) +
maxσ′2∈Σ2

u2(σ1, σ
′
2).

Counterfactual Regret Minimization
Counterfactual Regret is a notion of regret at the information
set level for extensive-form games (Zinkevich et al. 2008).
The Counterfactual Regret minimization algorithms itera-
tively learn strategies in self-play, converging to an equilib-
rium. The counterfactual value of information set I is the
expected payoff given that player i played to reach I , the
opponent played σ−i and both players played σ after I:

vi(I, σ) =
∑
z∈ZI

πσ−i(z[I])πσ(z[I], z)ui(z), (1)

where ZI = {z ∈ Z : ∃h ∈ I, h v z}, z[I] = h
such that h v z, h ∈ I , and πσ−i(h) is the reach prob-
ability due to the opponent and chance. Define σtI→a to
be a strategy identical to σt except at I action a is taken
with probability 1. The counterfactual regret of not taking
a ∈ A(I) at time t is rt(I, a) = vi(I, σ

t
I→a) − vi(I, σt).

We use the most recent CFR+ (Tammelin et al. 2015) al-
gorithm to minimize these regrets. This algorithm main-
tains values Qt(I, a) = max(0, Qt−1(I, a) + rt(I, a)) with
Q0(I, a) = 0 for every action at every information set. The
strategy for the next iteration σt+1(I) is proportional to the
maintained values:

σT+1(I, a) =

{
QT (I, a)/QTsum(I) if QTsum(I) > 0
1/|A(I)| otherwise,

(2)
where QTsum(I) =

∑
a′∈A(I)Q

T (I, a′). Furthermore, the
algorithm maintains the weighted average strategy profile:

σ̄T (I, a) =

∑T
t=1 t · πσ

t

i (I)σt(I, a)∑T
t=1 t · πσ

t

i (I)
, (3)

where πσ
t

i (I) =
∑
h∈I π

σt

i (h). The combination of the
counterfactual regret minimizers in individual information
sets also minimizes the overall average regret, and hence the
average profile is an ε-equilibrium, with ε→ 0 as T →∞.

Well-formed Imperfect-Recall Games
Imperfect recall in general introduces complications in find-
ing optimal solutions for games and the problem often
becomes NP-hard (Koller and Megiddo 1992). Therefore
Lanctot at al. (2012) introduce a subclass of imperfect-recall
games which does not suffer from these problems. This sub-
class was further extended in (Kroer and Sandholm 2014).

For an imperfect-recall game Γ, we define its perfect-
recall refinement Γ′, which is the exact same game, but the
information sets Ii are further partitioned to I ′i by splitting
the histories that would violate the perfect-recall condition
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Figure 1: Example of an imperfect-recall game and an equiv-
alent NFGSS. With the grey utilities, the game cannot be
represented as NFGSS.

to separate information sets. It means that histories h1 and
h2 are in the same information set in the refinement if and
only if they are in the same information set in the imperfect-
recall game and Xi(h1) = Xi(h2). We denote D(I) ⊂ I ′i
the set of information sets I ∈ Ii is divided into.

Following (Kroer and Sandholm 2014), an extensive-form
game with imperfect recall Γ is a chance-relaxed skew well-
formed game with respect to its perfect-recall refinement Γ′,
if for all i ∈ N, Ī ∈ Ii, I, J ∈ D(Ī), there exists a bijection
φ : ZI → ZJ , such that for all z ∈ ZI :

1. The actions of the opponent and chance on the paths to
the leaves mapped to each other are the same (X−i(z) =
X−i(φ(z))) or span the whole information sets on
the same level if they differ (∀(Ĩ , a) ∈ X−i(z) \
X−i(φ(z)),∀z′ ∈ ZI : (Ĩ , a) ∈ X−i(z

′)). Since φ is
a bijection, the roles of I and J are interchangeable.

2. The actions of player i after reaching Ī on paths to
leaves which are mapped to each other are the same:
Xi(z[I], z) = Xi(φ(z)[J ], φ(z)).

Kroer and Sandholm (2014) show that in well-formed
games, minimizing counterfactual regret in individual infor-
mation sets also minimizes regret in its perfect-recall refine-
ment. The relation between the regrets can be expressed in
terms of the following error terms:

3. |ui(z)− αI,Jui(φ(z))| ≤ εRI,J(z) for some fixed αI,J ∈
R is the reward error at z with respect to I, J ;

4. |π0(z[I], z)− π0(φ(z)[J ], φ(z))| ≤ ε0I,J(z) is the leaf
probability error at z with respect to I, J ;

5.
∣∣∣π0(z[I])
π0(I) −

π0(φ(z)[J])
π0(J)

∣∣∣ ≤ εDI,J(z[I]) is the distribution er-
ror of z[I].

For the clarity of exposition, we require all these errors to be
0. In that case, a direct consequence of Theorem 1 in (Kroer
and Sandholm 2014) is that running a counterfactual regret
minimization algorithm in the well-formed imperfect-recall
game converges to a Nash equilibrium in the refinement.

NFGSS as CRSWF Game
This section proves that any NFGSS can also be represented
as a well-formed imperfect-recall game. We start with a sim-
ple example showing the relation between the two classes of
games and why the standard issues with imperfect recall do
not occur in NFGSS. Figure 1a with the black utility values

presents an imperfect-recall extensive-form game, which is
equivalent to the NFGSS in Figure 1b. Even though the max-
imizing player4 forgets whether she played a or b, her fol-
lowing decision does not influence the utilities. Therefore, it
is a CRSWF game and it can be represented as an NFGSS.
The same game structure with the grey utilities is a typical
example of a problematic imperfect-recall game. It does not
have a Nash equilibrium in behavioral strategies (Wichardt
2008), it has a non-zero reward error for any bijection be-
tween histories below a and b, and it cannot be represented
as an NFGSS.

Before we state the main theorem, we need to extend the
definition of the reward error in CRSWF games to allow for-
getting the rewards accumulated in the past if they do not
influence future observations, actions, or rewards.

Proposition 1. If we define the reward error as

|ui(z)− βI − αI,J (ui(φ(z))− βJ)| ≤ εRI,J(z)

for some fixed αI,J , βI , βJ ∈ R, then Theorem 1 from
(Kroer and Sandholm 2014) still holds. Consequently, con-
verging to zero counterfactual regret in all information sets
translates to converging to a Nash equilibrium in any perfect
recall refinement of a game in case of zero error terms.

The complete statement and the proof of this proposition
are included in the appendix available online. The main idea
of the proof is that for any information set Ī in the imperfect-
recall game, we can create a modified game with utilities

uĪi (z) =

{
ui(z)− βI if z ∈ ZI , I ∈ D(Ī)
ui(z) otherwise. (4)

In this game, we can use Proposition 1 from (Kroer and
Sandholm 2014) to bound regret in Ī with the original def-
inition of the reward error. Finally, we show that the regrets
in the modified games are exactly the same as the regrets in
the original game, since the shifts βI cancel out.

For an NFGSS G=(S1, A1, S2, A2, T, U), a correspond-
ing extensive-form game Γ(G) = (N,A, H, Z, I, u) is:

A = A1 ∪ A2 ∪ Ac The set of player’s actions in the
EFG is the set of state-action pairs from his MDP: Ai =
{(s, a) : s ∈ Si, a ∈ A(s)}. Execution of each state-
action pair (s, a) leads to a chance node with actions rep-
resenting uncertainty in the transition using actions from
Ac = {(s, a, s′) : s, s′ ∈ Si, a ∈ A(s), T (s, a, s′) > 0}.
The chance probabilities of these actions are naturally de-
rived from T .

H A history h ∈ H is a sequence of actions in which each
player’s action is followed by a corresponding chance
action as defined above. The ordering of the actions of
different players can be arbitrary. We assume that each
history starts with actions of the first player until she
reaches a terminal state of her MDP. The actions of
the second player follow afterwards. For convenience,
we refer to histories in these corresponding games as a
pair (h1+c, h2+c) with each player’s actions and conse-
quent chance actions and do not deal with action ordering
among different players explicitly.



Z Let lsi : H → Si be a function returning the MDP state
of player i after last chance action consequent to her ac-
tion in a history. The terminal histories are the histories
in which both players reached the terminal state of their
MDP: Z = {h ∈ H : A(ls1(h)) = A(ls2(h)) = ∅}.

I Each information set corresponds to a node in a player’s
MDP. Histories h1, h2 in which player i takes action
(P (h1) = P (h2) = i), belong to the same information
set (I(h1) = I(h2)) if and only if they end by the same
state for the player: lsi(h1) = lsi(h

2).
u The utility of player 1 in a terminal history z is the sum

of marginal utilities for all pairs of actions in the history
u1(z) =

∑
(s1,a1)∈z1

∑
(s2,a2)∈z2 U((s1, a1), (s2, a2)).

Theorem 2. 1Let G be an NFGSS, then the corresponding
extensive-form game Γ(G) is a chance-relaxed skew well-
formed imperfect-recall game with zero errors.
Proof. Consider Γ′ = (N,A, H, Z, I ′, u), a perfect-recall
refinement of Γ(G), where each player’s information sets
are subdivided based on unique histories of her and sub-
sequent chance actions (i.e., a path in the MDP). To show
that Γ is well-formed with respect to Γ′, we define for each
I, J ∈ D(Ī), Ī ∈ I the bijection φ : ZI → ZJ to map
to each other the terminal histories passing through I and
J with the same opponent’s actions and the same player
i = P (I)’s actions after I or J is reached.

∀z = (zi+c, z−i+c) ∈ ZI φ(z) = (h(J)i+cz[I−]i+c, z−i+c)

where h(J)i+c denotes the unique player P (J)’s and conse-
quent chance history leading to J in the refinement Γ′ and
z[I−] denotes the suffix of history z after reaching informa-
tion set I . Subscript i+c added to any (partial) history refers
to only actions of player i and the consequent chance ac-
tions. The remaining actions are referred to by −i+c. This
bijection is well-defined, because the possible future se-
quences of actions of player i are the same after reaching
the same node in his MDP using different paths.

We follow by checking if all conditions required for a
well-formed imperfect-recall game are satisfied with φ.

1) The actions of the opponent and their consequent
chance actions are exactly the same in the mapping. The
only complication could be the player i’s chance actions,
which generally differ for histories in I and J . However, the
outcome of the chance nodes is always known to the player
before he selects a next action. Therefore, in the perfect-
recall refinement, all histories in each information set con-
tain the exact same chance action on each level.

2) The second condition is trivially satisfied directly from
the definition of φ.

3) The original definition of CRSWF games is not suffi-
cient to guarantee zero reward error for all histories. Con-
sider an example with the structure exactly the same as in
Figure 1, but the marginal utilities U(A, b) = 5, U(A, c) =
1 and zero for all other action pairs. Let the information sets
in the refinement be I = {a} and J = {b}. Based on the
definition of φ and u above:

φ(acA) = bcA, φ(adA) = bdA

1This claim does not hold; see the appendix for details.

u(acA) = 1, u(bcA) = 6, u(adA) = 0, u(bdA) = 5.

There is no αI,J , such that |1− αI,J6| = 0 = |0− αI,J5|.
However, this game can still be solved by counterfactual re-
gret minimization thanks to Proposition 1. Past rewards can
be forgotten and the future rewards are exactly the same.

4) The histories below information sets I and J are
formed by the exact same chance actions. Therefore, the leaf
probability error is zero.

5) We established above that all histories in any informa-
tion set I in the refinement include the exact same chance
actions of the player i = P (I) on the way to I; therefore
π0(z[I]i+c)/π0(I) = 1/|I|. There exist a bijection between
I and J ; hence, |I| = |J |. The distribution error is∣∣∣∣π0(z[I]i+c)π0(z[I]−i+c)

π0(I)
− π0(φ(z)[J ]i+c)π0(φ(z)[J ]−i+c)

π0(J)

∣∣∣∣ =
=

1

|I| |π0(z[I]−i+c)− π0(φ(z)[J ]−i+c)| = 0. (5)

The last equality holds because the opponent’s chance ac-
tions are copied in φ. �

There are two main consequences of this transformation.
First, we can run counterfactual regret minimization on the
EFGs corresponding to NFGSS and we are guaranteed that
these algorithms converge to a well defined Nash equilib-
rium solution. Second, since the computed equilibrium is an
equilibrium in any perfect-recall refinement, it proves that
the players gain no benefit from remembering the path that
they take to individual states of an NFGSS.

CFR+ for NFGSS
Previous works using CFR in imperfect-recall games use
random sampling to update counterfactual regrets (Waugh
et al. 2009). For NFGSS, we derive a more efficient version
of the algorithm which does not require sampling.

The algorithm stores for each action-value pair the special
form of regret Q defined in CFR+ and the mean strategy σ̄;
and for each MDP state the probability p(s) of reaching the
state under the current strategy. The current strategies σ can
be stored or always computed from Q to save memory. The
pseudocode is presented in Figure 2. In the main part of the
algorithm denoted by NFGSS-CFR+, each iteration of the
algorithm consists of separate updates for individual players
(lines 4-6). First, the current strategy of the opponent is used
to compute reach probabilities for all states and update the
mean strategy in his MDP (line 5). The reach probabilities
are used to compute the regrets Q and new strategies for all
action-value pairs of the player (line 6). Finally, we need to
normalize the mean strategies, since they are stored as sums.

The update of the probabilities on lines 1-6 of the second
function in Figure 2 is straightforward. Since the MDPs are
assumed to be acyclic, we can store the states in topologi-
cal order and easily traverse them from the root to leaves,
always having the predecessors resolved before reaching the
successors. Once a new probability is computed, the mean
strategy can be updated immediately on line 7. For updat-
ing regrets and strategies in the third function, we process
the state in the reverse order. For each state, we compute the
expected value of the game after it reaches the state v(si)
and the expected value of playing each action available in



NFGSS-CFR+

1: ∀i ∈ N σi := uniform strategy
2: ∀i ∈ N Qi := 0, σ̄i = 0
3: for iteration t ∈ (1, 2, . . . ) do
4: for i ∈ N do
5: UpdateStateProbabilitiesMeanStrategies(−i, t)
6: UpdateActionRegretsCurStrategies(i)
7: ∀i ∈ N Normalize(σ̄i)

UpdateStateProbabilitiesMeanStrategies(i, t)
1: ∀si ∈ Si p(si) = 0
2: p(s0

i ) := 1
3: for si ∈ Si in topological order do
4: for ai ∈ A(si) do
5: for s′ ∈ T (si, ai) do
6: p(s′) += p(si)σ(si, ai)T (si, ai, s

′)
7: σ̄i(si, ai) += tp(si)σi(si, ai)

UpdateActionRegretsCurStrategies(i)
1: ∀si ∈ Si v(si) = 0
2: for si ∈ Si in reverse topological order do
3: for ai ∈ A(si) do
4: v(ai) := 0
5: for s′ ∈ T (si, ai) do
6: v(ai) += T (si, ai, s

′)v(s′)
7: for s−i, a−i ∈ S−i ×A−i do
8: v(ai) += p(s−i)σ(s−i, a−i)Ui(si, ai, s−i, a−i)
9: v(si) += σ(si, ai)v(ai)

10: for ai ∈ A(si) do
11: Q(si, ai) := max(0, Q(si, ai) + v(ai)− v(si))
12: σi(si) := RegretMatching(Q(si))

Figure 2: Adaptation of CFR+ for NFGSS

the state (lines 4-9). The value of the action is the sum of the
expected value of the successors (lines 5-6) and the marginal
utility of executing the action, with respect to the probabil-
ities that the opponent executes her actions (lines 7-8). We
implement this step efficiently using sparse representation
of U . The expected value of the state is the sum of the ex-
pected values of executing individual actions weighted by
their probability in the current strategy (line 9). The regrets
are updated as prescribed by CFR+ (lines 10-11) and the
new strategy is computed by regret matching (Equation 2).

Proposition 3. The NFGSS-CFR+ algorithm converges to
an ε-Nash equilibrium of the game after

T ≤ max
i∈N

∆2|Si|2|Ai|
ε2

iterations, where ∆ is the overall range of (not marginal)
utility values in the game.

This proposition holds for CFR (and therefore also
CFR+) in CRSWF extensive-form games with zero error
terms (Lanctot et al. 2012). We only have to show that
NFGSS-CFR+ performs exactly the same updates as it
would perform in the equivalent EFG defined above. Fo-
cus on a specific information set I in iteration t and assume
all updates in previous iterations were equivalent. On itera-
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Figure 3: Evaluation domain schemas.

tion t, the current strategy is the same and therefore, the val-
ues v(ai) and v(si) computed on lines 3-9 of the algorithm
represent the same counterfactual values as the values com-
puted on the equivalent EFG based on Equation 1. Since the
update is defined only in terms of counterfactual values and
the current strategy (in case of mean strategy), all updates
are exactly the same.

Experimental Evaluation
Transit game (TG) is the game used for evaluation in
(Bosansky et al. 2015). For fair comparison, we have im-
plemented CFR+ within their publicly available code base.
The game is a search game in Euclidean space discretized
as an eight-connected rectangular grid, such as in Figure 3a.
The evader attempts to cross this grid from left to right with-
out meeting the patroller. Each move incurs a small penalty
(0.02) to the evader. The patroller starts in his base marked
in grey and moves on the graph along the edges (or stays
at its current node) for d time steps. If he is not back at the
base at the end of the game, he suffers a penalty (20). The
movement of each player fails with probability 0.1, which
causes the player to stay at its previous position. Every time
the players meet, the evader looses one point of utility to the
patroller. The authors in (Bosansky et al. 2015) approximate
this game as zero-sum; hence, all the penalties suffered by
one player are considered to be gains of the other player. In
the evaluation below, we consider the transit game of size w
to be played on w × 2w grid for d = 2w + 4 time steps.
Ticket inspection game (IG) is based on (Jiang et al. 2013).
It models scheduling a three hours long shift of ticket in-
spectors on a single train line. Jiang at al. use real world data
from the LA metro system and schedule for multiple patrols.
We consider a single patrol and generate synthetic data to
create problem instances of varying size. The data include
(1) the train schedules, which are in both directions gen-
erated non-uniformly, starting with approximately 5 times
longer intervals at the beginning of the shift than in the peak
time close to the end of hour two of the shift; (2) the pas-
senger trips defined by the number of passengers that take
each train between each pair of stations generated pseudo-
randomly based on non-uniform station popularity values;
and (3) the time intervals in which a train reaches a follow-
ing station. The patrol starts in the middle of the line. In a
station, the patrol can take the next train in either direction or
check the tickets of the passengers in the station for 15 min-
utes. On a train, she can either check the tickets of the pas-
sengers on the train until the next stop, or exit the train. The
patrol checks 5 passengers per minute and the passengers



are assumed to be present in the stations 3 minutes before
their train departs and 3 minutes after it arrives. Because of
unexpected delays, the patrol can with probability 0.1 miss
the train it intended to take and stay at the station, or fail
to exit the train at the intended station and stay in the train
until the next one. The game has originally been modelled
as a Bayesian game with passengers taking the same trip as
types, but it can be also seen as NFGSS. Instead of types,
we model the passengers’ strategy by the MDP in Figure 3b.
The MDP starts with a dummy action with one outcome for
each trip, occurring with the probability that a random pas-
senger takes the trip. In each of these outcomes, the passen-
ger chooses an action representing either buying a ticket or
not buying a ticket. The MDP of the patroller starts with a
dummy action of collecting the fare money, which gives him
a reward of $1.50 for each passenger that buys a ticket. Af-
terwards, the MDP describes her movement on the line and
the patrol gets a reward of $100 for each checked passenger
which did not buy a ticket. The game is zero-sum, with the
patrol maximizing its revenue per passenger and each pas-
senger type minimizing its cost. The ticket inspection game
of size s has s stations, s trains in each direction and approx-
imately s thousand passengers.

Results
We compare the run time of the proposed NFGSS-CFR+

algorithm to the full compact strategy LP formulation and
the double oracle (DO) algorithms proposed in (Bosansky et
al. 2015). Since CFR+ is generally used as an approxima-
tive algorithm, we compare the run time of the algorithms
with various target precision: 0.1, 0.01 and 0.001 in absolute
utility value. For solving LPs, we used IBM CPLEX 12.51.
The simplex algorithm is substantially faster than the barrier
method on large instances of these problems, so we use sim-
plex. The precision of CPLEX is by default set to 10−6. Set-
ting it to a higher value increased the run time, most likely
because of “Harris’ method”-like feasibility bounds shifts.
The limit on these shifts is also controlled by the precision
parameter. When these shifts are eventually removed, the so-
lution is in a substantially more infeasible state, which is
harder to correct and the correction has a larger negative ef-
fect on optimality (Klotz and Newman 2013). Therefore, we
evaluate only the default setting. The results presented in
Figures 4(a,c) are means of 10 runs with small a variance
and Figures 4(b,d) are each a single representative run.

The precision of 0.01 in the transit game is half the
penalty the evader pays for each move. We compute the util-
ity in IG in cents; hence, the error of 0.01 per passenger
means a loss of $3 of overall revenue in the largest game
with 30 thousand passengers. Since the models are always
an approximation of the real world problems, we consider
error of 0.1 to be perfectly acceptable and the error smaller
than 0.01 irrelevant from the domain perspective.

Figure 4a presents the computation times required by the
algorithms to reach the given precision in TG. This domain
is suitable for the double oracle algorithm; hence, in games
of all evaluated sizes, DO outperforms LP for any precision.
LP was not able to solve the larger games within 30 hours.
For precision of 0.1 and 0.01, CFR+ clearly outperforms DO
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Figure 4: Computation times and convergence curves for
Transit (a,b) and Ticket inspection (c,d) games. CFR+(cur)
is the current strategy of CFR+.

for all game sizes by up to factor of 5 (note the log scale).
For the largest game with width 12 (5041 and 6118 states in
the MDPs), CFR+ finds the solution with precision 0.01 in
119 minutes, while for DO, it takes almost 10 hours. Two
hours are enough for DO to reach precision of 0.01 in game
of size 8 with 1729 and 2036 MDP states. For very high pre-
cision, DO already outperforms CFR+ on the smallest game
instance. Figure 4b presents the progress of the convergence
in time on a log-log plot. Besides CFR+ and DO, we present
also the adaptation of standard CFR to NFGSS analogous to
the presented adaptation of CFR+, and the performance of
the current strategy of CFR+. The current strategy has no
formal guarantees, but has been observed to converge to an
equilibrium in some poker games. We can see that the mean
strategy of CFR+ converges the fastest, but the current strat-
egy also converges, which allows reducing the memory re-
quirements of the algorithm by not storing of the average
strategy. DO initially converges slowly, but eventually starts
converging very quickly, which allows it to reach higher pre-
cisions before CFR+.

We present the exact same experiments for the ticket in-
spection game in Figures 4c and 4d. The LP formulation of
the game always outperforms DO. With the exception of the
smallest game, CFR+ reaches precision of 0.1 and 0.01 be-
fore the LP finishes. In the largest game (4699 and 15362
MDP states), CFR+ reaches the precision of 0.01 after 74
minutes, while the LP requires almost 226 minutes. Even in
this domain, CFR+ converges faster than CFR. The current
strategy converges even faster than the average strategy.



Conclusions
We study an abstract class of games called NFGSS, suit-
able for modelling a variety of real world security problems.
We transfer several key poker research results to this class.
We extend the previously studied notion of well-formed
imperfect-recall games and show that after this extension,
it can model any game from NFGSS. We propose an adap-
tation of CFR+ for this class and provide a formal guaran-
tee that it converges to a Nash equilibrium. We empirically
show that with a small loss of precision, it allows solving
larger problem instances with up to five times less compu-
tation time than the currently used approaches. With CFR+,
we can solve the game models more frequently (e.g., if they
are not entirely static) or solve substantially larger game in-
stances in the same time as with standard methods.

This paper opens two natural directions of future research.
First, since incremental game generation in double oracle al-
gorithms is, to a large extent, orthogonal to the actual equi-
librium solving algorithm, combining it with CFR+ might
lead to an additional speedup. Second, the link we estab-
lished between NFGSS and CRSWF games can help to fur-
ther extend these classes of games to allow modelling more
complex interactions between players’ strategies.
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Proof of Proposition 1
Proposition 1 from (Kroer and Sandholm 2014) says that for any CRSWF game Γ, its refinement Γ′, strategy profile σ and
information set Ī in I such that player i has bounded regret r(Ī , a) for all a ∈ A(Ī), the regret r(I, a′) at any information set
I ∈ D(Ī) and action a′ ∈ AI is bounded by

r(I, a′) ≤ max
J∈D(Ī)

αI,Jr(Ī , a
′) + 2

∑
h∈I

πσ(h)

πσ(I)

(
ε0I,J(h) + εRI,J(h)

)
+ εDI,J (6)

Let Γ be a CRSWF game with perfect recall refinement Γ′. Let Ī ∈ I be an information set in the CRSWF game. We define
a modified game ΓĪ by substituting a new utility function uĪ for the utility function u of Γ. uĪ is defined such that

uĪi (z) =

{
ui(z) if z 6∈ ZĪ
ui(z)− βI if z ∈ ZI where I ∈ P(Ī)

(7)

Note that uĪ is well-defined: if z ∈ ZĪ , then there is some unique I ∈ P(Ī) such that z[Ī] ∈ I . Because Γ is CRSWF and
the CRSWF conditions are not dependent on the utility structure of the game, ΓĪ is also CRSWF. Let Γ′

Ī
be the perfect recall

refinement of ΓĪ . Fix σ to be a strategy profile for Γ (and thus also for ΓĪ ). Let a ∈ A(Ī) be any action. Then we can use
Proposition 1 from Kroer and Sandholm to bound the regret of a′ in Γ′

Ī
:

rĪ(I, a
′) ≤ max

J∈P(Ī)
αI,JrĪ(Ī , a

′) + 2
∑
h∈I

πσ(h)

πσ(I)

(
ε0I,J(h) + εR,ĪI,J (h)

)
+ εDI,J (8)

In this equation rĪ(I, a′) and rĪ(Ī , a′) use the utility structure of ΓĪ , as does the reward error εR,ĪI,J (h). The other terms are
independent of utility and thus also apply to Γ. Let Zh = {z ∈ Z | h v z} be the set of terminal histories which can be reached
from h. We now show that regret in ΓĪ is the same as in Γ.

rĪ(Ī , a) =
∑
h∈Ī

πσ(h)

πσ(Ī)

∑
z∈Z(ha)

πσ(ha, z)uĪi (z)−
∑
h∈Ī

πσ(h)

πσ(Ī)

∑
a′∈A(I)

πσ(Ī , a′)
∑

z∈Z(ha′)

πσ(ha′, z)uĪi (z)

=
∑

I∈P(I)

∑
h∈I

πσ(h)

πσ(Ī)

 ∑
z∈Z(ha)

πσ(ha, z)uĪi (z)−
∑

a′∈A(I)

πσ(Ī , a′)
∑

z∈Z(ha′)

πσ(ha′, z)uĪi (z)


=
∑

I∈P(I)

∑
h∈I

πσ(h)

πσ(Ī)

 ∑
z∈Z(ha)

πσ(ha, z)(ui(z)− βI)−
∑

a′∈A(I)

πσ(Ī , a′)
∑

z∈Z(ha′)

πσ(ha′, z)(ui(z)− βI)


=
∑

I∈P(I)

∑
h∈I

πσ(h)

πσ(Ī)

 ∑
z∈Z(ha)

πσ(ha, z)ui(z)−
∑

a′∈A(I)

πσ(Ī , a′)
∑

z∈Z(ha′)

πσ(ha′, z)ui(z)

−βI

 ∑
z∈Z(ha)

πσ(ha, z)−
∑

a′∈A(I)

πσ(Ī , a′)
∑

z∈Z(ha′)

πσ(ha′, z)


=
∑

I∈P(I)

∑
h∈I

πσ(h)

πσ(Ī)

 ∑
z∈Z(ha)

πσ(ha, z)ui(z)−
∑

a′∈A(I)

πσ(Ī , a′)
∑

z∈Z(ha′)

πσ(ha′, z)ui(z)

 = r(Ī , a)

Where r(Ī , a) is the regret of action a with strategy σ at Ī in Γ. A similar proof shows that rĪ(I, a) = r(I, a) for each
I ∈ P(Ī). Combining these facts with (6) lets us bound the regret in Γ′.

r(I, a) = rĪ(I, a) ≤ max
J∈P(Ī)

αI,JrĪ(Ī , a) + 2
∑
h∈I

πσ(h)

πσ(I)

(
ε0I,J(h) + εR,ĪI,J (h)

)
+ εDI,J

= max
J∈P(Ī)

αI,Jr(Ī , a) + 2
∑
h∈I

πσ(h)

πσ(I)

(
ε0I,J(h) + εR,ĪI,J (h)

)
+ εDI,J

And here εR,ĪI,J (h) is defined as a function of terminal reward errors εR,ĪI,J (z) such that

εR,ĪI,J (z) ≥ |uĪi (z)− αI,JuĪi (φ(z))| = |(ui(z)− βI)− αI,J(ui(φ(z))− βJ)|.
So we have shown that Proposition 1 still applies in Γ′ when we shift the utility of each information set before defining the

reward error.



Mistake in Theorem 2
Theorem 2 in the paper is unfortunately wrong. The proposed extension of CRSWF games is not sufficient to include all
NFGSS. The mistake in the proof is in reward error. The rewards realized after an information set may depend on a (possibly
forgotten) decision before the information set, which was overlooked in the proof. A simple counterexample is the game from
Figure 1 with marginal utility U(A,a)=2 and all other utilities identical. However, CFR+ is still guaranteed to converge in
NFGSS and we present an alternative proof below.

Convergence of CFR+ in NFGSS
Consider an imperfect recall EFG constructed from an NFGSS as outlined in the paper. In this proof, we will show that when
CFR+ is used to select strategies in the imperfect recall game, the average regret of these strategies converges to 0 in the perfect
recall refinement. As a result, CFR+ safely converges to a Nash equilibrium in the perfect recall refinement.

The general strategy of this proof is to show that a player’s utility at an information set can be decomposed into utility
generated by actions leading to the information set and utility generated by actions taken after the information set, with the
former cancelling out in the counterfactual regret calculation. This in turn means that information sets which are distinct in the
perfect recall refinement but combined in the imperfect recall game must have proportional regrets, as they differ only in the
actions leading to the information set. Regret in the imperfect recall game is the sum of regrets in the perfect recall refinement,
so when imperfect recall regret is minimized, each of the perfect recall regrets must be proportionately minimized.

For any history h in the EFG, we can decompose it into partial histories as h = (h1, h2) where each hi contains only actions
of player i and the chance actions from the MDP of player i. Note that we further use only index i, but for the rest of this
appendix, we always mean i+c with partial histories. In a perfect recall game a player cannot forget any of his previous actions
(or the corresponding chance events, which are immediately observed in the MDP), so if there are h, h′ ∈ I for a perfect recall
information set I where P (I) = i, then it must be the case that hi = h′i. Thus for any perfect recall information set I where
P (I) = i, each history in I contains a unique partial history for player i, which we denote hIi .

For any terminal history z, recall z[I] is the unique h ∈ I such that h v z and z[I−] to be the suffix of z after z[I] (so
z = z[I]z[I−]). We extend these definitions to player partial histories: we decompose z = (z1, z2), and when P (I) = i we
define zi[I] to be the unique partial history hi such that hi v zi; and hi ∈ h for some h ∈ I ,2 and define zi[I−] to be the suffix
of zi after zi[I].

We can also decompose the the utility of a terminal history. If z ∈ Z,P (I) = i and we decompose z as z =
(zi[I]zi[I−], z−i), then by the properties of the NFGSS

u(z) = u(zi, z−i) (9)

=
∑

(si,ai)∈zi

∑
(s−i,a−i)∈z−i

U((si, ai), (s−i, a−i)) (10)

=
∑

(si,ai)∈zi[I]

∑
(s−i,a−i)∈z−i

U((si, ai), (s−i, a−i)) +
∑

(si,ai)∈zi[I−]

∑
(s−i,a−i)∈z−i

U((si, ai), (s−i, a−i)) (11)

To reflect this property, we overload the u function and write u(zi, z−i) = u(zi[I], z−i) + u(zi[I−], z−i).
Define πci(h) to be the contribution to π(h) only from the chance nodes that follow actions of player i (chance events from

the MDP of player i). Thus π(h) = πi(h)πci(h)π−i+c(h). We are now ready to show that regrets in the perfect recall refinement
are proportional:

Lemma 4. Let Ī be an information set in an EFG corresponding to a NFGSS, and let I, J ∈ D(Ī) be information sets in the
perfect recall refinement of Ī . Then for any fixed strategy profile in the imperfect recall game, the counterfactual regrets are
proportional in I and J:

r(I, a) =
πci(h

I
i )

πci(hJi )
r(J, a) (12)

Proof. Define Zi to be the set of partial histories for player i that occur in any terminal history: Zi = {hi : (∃h−i)(hi, h−i) ∈
Z}. We have already defined ZI to be the set of terminal histories which can be reached from I; we can extend this definition
to player partial histories as ZiI = {zi : (∃z−i ∈ Z−i)((zi, z−i) ∈ Z ∧ (∃h ∈ I)h v (zi, z−i))} where i = P (I). Because each
player never observes the actions of the other player, there is a clear bijection between ZI and ZiI × Z−i.

Because I is from a perfect recall abstraction, zi[I] = hIi for any zi ∈ ZiI , and thus we can decompose zi ∈ ZiI as
zi = hIi zi[I−]. We define a bijection φ : ZiI → ZiJ as φ(zi) = hJi zi[I−]. We know φ(zi) ∈ ZJ because Ī corresponds to an
MDP state for player i in the NFGSS, and thus the same series of actions must be possible from both I and J . The function is
clearly a bijection because it can be inverted by reversing the role of I and J .

2We know z[I] and zi[I] are unique because the EFG is not absent-minded; no prefix of a history can be in the same information set as
the history.



We now analyze the counterfactual regret in I .

ri(I, a) =
∑
z∈ZI

π−i(z[I])π(z[I]a, z)u(z)−
∑
z∈ZI

π−i(z[I])π(z[I], z)u(z)

=
∑
z∈ZI

π−i+c(z)πci(z[I]) (πi+c(z[I]a, z)− πi+c(z[I], z))u(z)

=
∑
zi∈Zi

I

∑
z−i∈Z−i

π−i+c(z−i)πci(zi[I]) (πi+c(zi[I]a, zi)− πi+c(zi[I], zi))u(zi, z−i)

because there is a bijection between ZI and ZiI × Z−i
=
∑
zi∈Zi

I

∑
z−i∈Z−i

π−i+c(z−i)πci(h
I
i )
(
πi+c(h

I
i a, zi)− πi+c(hIi , zi)

) (
u(hIi , z−i) + u(zi[I−], z−i)

)

=
∑

z−i∈Z−i

π−i+c(z−i)πci(h
I
i )u(hIi , z−i)

 ∑
zi∈Zi

I

πi+c(h
I
i a, zi)−

∑
zi∈Zi

I

πi+c(h
I
i , zi)


+
∑
zi∈Zi

I

∑
z−i∈Z−i

π−i+c(z−i)πci(h
I
i )
(
πi+c(h

I
i a, zi)− πi+c(hIi , zi)

)
u(zi[I−], z−i)

=
∑
zi∈Zi

I

∑
z−i∈Z−i

π−i+c(z−i)πci(h
I
i )
(
πi+c(h

I
i a, zi)− πi+c(hIi , zi)

)
u(zi[I−], z−i)

=
πci(h

I
i )

πci(hJi )

∑
zi∈Zi

I

∑
z−i∈Z−i

π−i+c(z−i)πci(h
J
i )
(
πi+c(h

J
i a, φ(zi))− πi+c(hJi , φ(zi))

)
u(φ(zi)[J−], z−i)

because the sequence of actions from I to zi is the same as the sequence of actions from J to φ(zi)

=
πci(h

I
i )

πci(hJi )

∑
zi∈Zi

J

∑
z−i∈Z−i

π−i+c(z−i)πci(h
J
i )
(
πi+c(h

J
i a, zi)− πi+c(hJi , zi)

)
u(zi[J−], z−i)

because φ is a bijection

=
πci(h

I
i )

πci(hJi )
r(J, a)

We have shown that the regret in each perfect recall information set is proportional to the regret in any information set that
it is combined with in the imperfect recall game. Thus if we minimize the regret in any one of these information sets, we
necessarily minimize regret in each of the others. All that remains to show is that minimizing regret in the imperfect recall
game achieves this goal.

The overall average regret for player i of a series of strategy profiles σ1, ..., σT in a perfect recall game Γ′ is

1

T
RTi =

1

T
max
σ∗i ∈Σi

T∑
t=1

(
ui(σ

∗
i , σ

t
−i)− ui(σt)

)
(13)

This is a measure of how much player iwould have rather played a fixed strategy against the actual series of opponent strategies.

Theorem 5. Let Ii be the information sets for player i in an EFG Γ corresponding to an NFGSS and let I ′i be the information
sets in the corresponding perfect recall refinement Γ′. If CFR+ is used to select a series of strategies in Γ, then we can bound
the average regret of these strategies in Γ′ for each player i:

1

T
RTi ≤

∆i|Ii|
√
|Ai|√

T
(14)

Proof. We begin by showing that counterfactual regrets in an information sets Ī in the imperfect recall game are sums of
counterfactual regrets over D(Ī) in the refinement, and thus we can use Lemma 4 to show that the regrets are proportional. Fix



some Ī ∈ Ii and I ∈ D(Ī).

ri(Ī , a) =
∑
z∈ZĪ

π−i(z[Ī])π(z[Ī]a, z)u(z)−
∑
z∈ZĪ

π−i(z[Ī])π(z[Ī], z)u(z)

=
∑

J∈D(Ī)

(∑
z∈ZJ

π−i(z[J ])π(z[J ]a, z)u(z)−
∑
z∈ZJ

π−i(z[J ])π(z[J ], z)u(z)

)

=
∑

J∈D(Ī)

ri(J, a)

=
∑

J∈D(Ī)

πci(h
J
i )

πci(hIi )
ri(I, a)

We can now bound the average regret in Γ′.

RTi ≤
∑
I∈I′i

max
a

(
T∑
t=1

rti(I, a)

)+

by Theorem 3 of (Zinkevich et al. 2008)

=
∑
I∈Ii

∑
I∈D(Ī)

max
a

(
T∑
t=1

rti(I, a)

)+

=
∑
I∈Ii

∑
I∈D(Ī)

max
a

(
T∑
t=1

πci(h
I
i )∑

J∈D(Ī) πci(h
J
i )
rti(Ī , a)

)+

=
∑
I∈Ii

max
a

(
T∑
t=1

rti(Ī , a)

)+ ∑
I∈D(Ī)

πci(h
I
i )∑

J∈D(Ī) πci(h
J
i )

=
∑
I∈Ii

max
a

(
T∑
t=1

rti(Ī , a)

)+

≤
∑
I∈Ii

max
a

Q(Ī , a)

by Lemma 1 of (Tammelin et al. 2015)

∴
1

T
RTi ≤

∆i|Ii|
√
|Ai|√

T

by Lemma 2 of (Tammelin et al. 2015)

Thus minimizing regret in each information set of the imperfect recall game minimizes overall average regret in the perfect
recall refinement for each player. It is well known (see, e.g., (Zinkevich et al. 2008)) that when average regret is minimized by
a series of strategy profiles, the profiles must converge to a Nash equilibrium. Thus we can use CFR+ in the EFG to find a Nash
equilibrium for the NFGSS. Consequently, NFGSS-CFR+ is guaranteed to find a Nash equilibrium in any NFGSS.


