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Abstract

Opponent modelling is an important issue in games programming today. Programs which

do not perform opponent modelling are unlikely to take full advantage of the mistakes

made by an opponent. Additionally, programs which do not adapt over time become less

of a challenge to players, causing these players to lose interest. While opponent modelling

can be a difficult challenge in perfect information games, where the full state of the game

is known to all players at all times, it becomes an even more difficult task in games of

imperfect information, where players are not always able to observe the actual state of

the game. This thesis studies the problem of opponent modelling in Kuhn Poker, a small

imperfect information game that contains several properties that make real-world poker

games interesting. Two basic types of opponent modelling are studied, explicit modelling

and implicit modelling, and their effectiveness is compared.
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Chapter 1

Introduction

1.1 Problem Definition

Opponent modelling is currently a major issue in games programming. Many games lose

their appeal to players as the players find weaknesses in the game AI and the game becomes

less of a challenge. Game programs which do opponent modelling can tailor the play of the

game to make it harder for the user, which gives the program more of a lasting appeal as

it continues to challenge the user. However, the problem of performing effective opponent

modelling, in terms of quickly generating a model that accurately predicts what the opponent

will do, is extremely difficult in most applications. This problem can be challenging in

games of perfect information, where the full state of the game is known to all players at all

times. This problem becomes even more difficult when the domain is a game of imperfect

information, where players make decisions without knowing the precise state of the game.

For example, poker is an imperfect information game, where players are not informed of

what their opponents’ private cards are.

Poker presents a very interesting challenge in artificial intelligence research. While world-

class computer players have been developed for perfect-information games such as check-

ers and chess, computer programs for poker have not been as successful. Some of the

strongest current poker-playing programs are based on game-theoretic techniques; unfor-

tunately, game-theoretic approaches are quickly reaching their computational bounds, as

full-scale poker games such as Texas Hold’em are simply too big to solve at this time. In

addition, game-theoretic solutions have a tendency to limit the winnings as well as the losses

of the player using them. Since the goal is to defeat opponents and not just break even,

being adaptable to different opponents is a key component of current poker programs in

development.

In poker, hands often end without the players’ private cards revealed, which is one of

1



the major issues that makes opponent modelling in this setting difficult. When a hand ends

with one player folding, the modeller is left to wonder which of the large number of potential

hands his opponent held and based his decisions on. There is also a great deal of variance in

the game, stemming from the size of the deck and from players using stochastic strategies.

Another challenge is that against human opponents it is likely that most matches will only

last a short time (maybe only 50 or 100 hands), meaning there is very little time to learn an

opponent model. To top it off, if all of these challenges are overcome and a good opponent

model is developed, an opponent may change his strategy, making the current model useless

or even harmful.

The research in this thesis studies the effectiveness of different modelling techniques in

an ideal setting; the context is the small two-player game of Kuhn Poker, and the oppo-

nent being modelled plays a fixed strategy. Two diametrically opposite types of opponent

modelling are compared: explicit modelling and implicit modelling. Explicit modelling in-

volves identifying the opponent’s strategy in order to discover weaknesses, and using this

model to develop an effective counter-strategy. Implicit modelling involves using different

counter-strategies against the opponent and finding one which is effective, without worrying

about the exact nature of the opponent’s weaknesses. The problem has been reduced from

a real-world game to a simpler setting to prevent the results from being obscured by the

variance in the game, as well as the sparseness of data.

Opponents are restricted to fixed strategies because the techniques are being evaluated

on how quickly the opponent model matches the opponent; evaluation becomes much trickier

when both the model and the target are simultaneously changing. Being able to quickly and

effectively model a stationary opponent is a logical first step towards being able to model a

dynamic opponent.

If the ultimate goal is to be able to do effective modelling in a real-world game, then

the ability to first do effective modelling in an ideal setting is a necessity. One of the key

insights of this research is that even in the ideal situation, opponent modelling is quite

difficult. In the small game being studied, the best counter-strategy to the opponent is

often not discovered. However, the fact that the problem has been significantly simplified

here allows for extensive analysis of precisely where the difficulties lie, and how they may

be addressed. Difficulties in opponent modelling found in this ideal setting will surely be

present in a full-scale poker game.
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1.2 Approach to the Problem

The technique of explicit modelling discussed in this thesis assumes that the opponent is

playing a fixed stochastic strategy. Such strategies are defined by a set of parameters, with

each parameter specifying the probability of taking a particular action when faced with a

certain situation. The goal of explicit modelling is to estimate the opponent’s parameters;

once the parameters have been estimated, a suitable counter-strategy can be computed.

The technique of implicit modelling is given several counter-strategies to use against

the opponent. The modeller samples from this set of strategies as he plays against the

opponent, attempting to determine which is the best counter-strategy. The sampling of

strategies is done in accordance with the Exp3 algorithm [2], which has excellent long-

term performance guarantees. However, since this thesis is concerned with winning in short

matches, modifications are made to improve the short-term performance while not damaging

the long-term guarantees.

The opponent modelling techniques are evaluated with two primary measures. Both

measures involve the modeller collecting data about the opponent from hand 1 until hand t,

deciding which counter-strategy appears to be the best against the opponent at that time,

and then playing this counter-strategy for the remainder of the match. The set of hands

from 1 to t is called the exploration phase, while the set of hands from t + 1 and onwards

is called the exploitation phase. Hand t is known as the switching hand as this accurately

describes the modeller’s complete shift from exploration to exploitation at that hand. The

first measure for evaluating the opponent modelling techniques is the winning rate of the

counter-strategy suggested by the model at the switching hand. Plotting this metric for

each possible switching hand generates payoff-rate graphs, which trace the progress of the

model over the course of the match. Figure 1.1 is an example of a payoff-rate plot.

The second measure is the expected total winnings of the model, which is calculated as

the sum of the winnings achieved during the exploration phase plus the expected winnings of

the exploitation phase, assuming a specific total number of hands is to be played. Plotting

this measure over each possible switching hand results in total winnings graphs, such as the

example shown in Figure 1.2.

Both of these measures are important, as the first measure indicates how quickly the

model is converging to the correct one, while the second measure indicates whether opponent

modelling is worth the cost required to develop the model.

3



 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0  100  200  300  400  500  600  700  800  900

E
xp

ec
te

d 
P

ay
of

f R
at

e

Switching Hand

Maximum
Equilibrium Data-Collection Strategy (Gamma = 1)

Figure 1.1: Sample Payoff-Rate Plot

-20

-15

-10

-5

 0

 5

 10

 0  50  100  150  200

E
xp

ec
te

d 
T

ot
al

 W
in

ni
ng

s

Switching Hand

Maximum
Equilibrium Data-Collection Strategy (Gamma = 1)

Equilibrium Value

Figure 1.2: Sample Total winnings Plot

4



1.3 Contributions of this Research

The first major contribution of this thesis is the development of parameter estimation meth-

ods in imperfect information games, a problem which has not previously received much

attention. Many different types of situations are identified, where different types of infor-

mation are available; methods to make use of the available data are described for each of

these settings.

A second major contribution is the adaptation of the well-known Exp3 algorithm for

use in a multi-action game, as it is designed for a slightly different problem. Additionally,

several enhancements are made to improve short-term performance of the algorithm without

hurting the long-term guarantees.

This thesis provides insight into many of the problems faced by researchers doing mod-

elling in larger systems, which may not be as easy to observe in the large systems. First

and foremost, this thesis shows that even in a highly idealized setting, opponent modelling

is a difficult problem. This suggests that the issues of partial observability and variance in

the game are major contributors to opponent modelling difficulties; not all of the difficulties

encountered by opponent modelling systems in larger settings are due to huge models and

sparse data. Another insight, which has been known to game theorists for years but may not

be commonly known among AI researchers, is that when a game player uses an equilibrium

strategy (a game-theoretic solution to the game), the player often limits his own winnings

as well as the winnings of his opponent. Developing programs that will win requires taking

advantage of an opponent, which means straying from equilibrium solutions and risking

defeat. Effective opponent modelling methods must be developed to guide the departure

from equilibrium strategies and minimize the risk of losing.

The experiments shown in this thesis demonstrate many interesting conclusions. While it

is not possible to always find the best counter-strategy in a short match, improving upon the

equilibrium rate is almost always possible. In this small game where data is readily available,

the impact of bad initial parameter estimates is quickly eliminated. Another interesting

result is that the interval of time for which switching from exploration to exploitation makes

big gains seems to be relatively insensitive to the type of opponent being played and to

the length of the match. A very interesting result is the fact that strategies which are

identically valued under one standard measure (worst-case winning rate) can have very

different exploration values. Finally, in this small game explicit modelling is superior to

implicit modelling; however, this does not mean that implicit modelling research should be

abandoned, as there are indications that implicit modelling might be a better choice for

5



large games.

1.4 Outline

The thesis proceeds as follows. Chapter 2 is focused on providing background material,

which includes defining terminology essential to the thesis. This chapter also describes the

game which is the testbed of the methods described, Kuhn Poker, and some of the properties

which make this game interesting.

Chapter 3 describes how an explicit model of an opponent can be created, and Chapter 4

demonstrates the effectiveness of the explicit modelling techniques with different methods

of collecting data about the opponent. Chapter 5 examines the technique of implicitly

modelling an opponent, and shows how existing algorithms can be adapted and improved.

Chapter 6 describes other research activities which are strongly related to the research

described here. This includes other studies done on poker and other imperfect information

games, opponent modelling in a variety of settings, and other related work.

Chapter 7 concludes the thesis, summarizing the findings and possible future directions

of this research.
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Chapter 2

Essential Background

2.1 Game Theory Definitions

The purpose of this thesis is to investigate the usefulness of different opponent modelling

methods. One may wonder why opponent modelling is useful at all if game theoretic solu-

tions exist for the games under consideration (ie. what’s left to do after solving the game?).

The fundamentals of game theory determined that game theoretic solutions will achieve the

highest expected payoff rate that can be guaranteed [40]; what is not as well known is the

fact that if a player uses game theoretic solutions then often he will not exploit mistakes

made by his opponent, and will limit his potential winnings as well as his losses.

Before going into how the concepts of game theory are very useful in this research, a

few key terms must be defined. First of all, a game is a process which involves two or

more participants (called players) who make decisions based on the information available

to them, and these decisions affect the outcome of the game. Chance may be a factor both

in determining what decisions players face, and in determining the outcome of the game.

When a game ends, each player receives a reward (which could be positive or negative),

depending on the outcome; generally it is assumed that each player wants to maximize his

reward.

This research is primarily concentrated on two-person zero-sum games. Zero-sum games

are games in which the sum of the rewards given to the players at the end of the game is

zero. Since the rewards sum to zero, one player’s loss is another’s gain, and the players

must compete against each other to get higher rewards. In games that aren’t zero-sum,

a player may be indifferent to what rewards his opponents are achieving as long as he is

satisfied with his reward. The reason the research is restricted to two-player games is that

as more players are added there is an exponential increase in the number of situations that

can occur, as well as the fact that more complex opponent models are needed to describe
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some players cooperating rather than just competing against each other. When describing

two-player games the players will be denoted as P1 and P2.

A key feature of many of the games studied here is that each player will have private

information (like hole cards in Texas Hold’em) that is not available to the other player

during gameplay. The games may also have public information (like the betting sequence or

community cards in Texas Hold’em) that is available to all players. This leads to the concept

of information sets: an information set for P1 [P2] is the set of all possible P1 [P2] decision

nodes for which P1 [P2] receives the same information (both public and private), but P2’s

[P1’s] private information is different. P1 [P2] cannot distinguish different elements of an

information set during gameplay, and must use the same strategy for each distinct element

of the set. Terminal nodes of a game tree for which a player has identical information are

also of interest and will be said to be in an information leaf-set. Information sets will be

denoted 〈H1, H2 : D〉, where Hi is the hand held by the ith player and D is the public

information for the game. If a quantity is unknown (most of the time a player knows only

his hand and not his opponent’s hand) then it will be replaced by a question mark, while

the empty sequence (which is usually the situation immediately after the deal before either

player has acted) will be represented by φ. The terms information set and situation will be

used interchangeably in this thesis.

A strategy for a player is a complete description of how to play a game; it describes

how to choose actions in every information set that could possibly arise. A pure strategy

is a strategy in which all of the choices are deterministic; every time a specific situation is

reached, the action taken is always the same. A mixed strategy is a strategy that is a mixture

of one or more pure strategies, each played with some nonzero probability. For example, the

strategy of playing pure strategy SA 50% of the time, playing pure strategy SB 30% of the

time and playing pure strategy SC 20% of the time is a mixed strategy. The use of mixed

strategies allows different decisions to be made when a situation is reached repeatedly. The

support of a mixed strategy Sm is the set of pure strategies which are chosen from with

nonzero probability when Sm is used [31].

The expected value or expected payoff-rate of a strategy SP used by P against an opponent

O using strategy SO is the average reward P can expect to receive, averaged over the possible

outcomes of the game given the two player’s strategies and the chance elements of the game.

If Z is the set of possible game outcomes and x(z) is the reward given to P if the outcome

of the game is z, then the expected reward can be explicitly stated as

EV [x|SP , SO] =
∑

z∈Z

P (z|SP , SO)x(z).
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If SP is a mixed strategy with the pure strategies S1, S2, . . . , Sn being played with

probabilities p1, p2, . . . , pn, then

EV [x|SP , SO] =

n∑

i=1

piEV [x|Si, SO ].

A strategy S∗
P is said to be a best-response strategy to the strategy SO if

EV [x|S∗
P , SO] = max

S
EV [x|S, SO ]

where the maximization is over the set of all possible strategies that P could use. The

expected value achieved by a best-response strategy is defined to be the exploitability of SO.

Suppose that SO has an exploitability of VO and a best-response strategy S∗
P is a mixed

strategy with the pure strategies being played with probabilities p∗1, p
∗
2, . . . , p

∗
n. Then

EV [x|S∗
P , SO] =

n∑

i=1

p∗iEV [x|Si, SO]

≤
n∑

i=1

p∗i VO (VO is the maximum payoff-rate against SO)

= VO (probabilities sum to 1).

In order for equality to hold in the second line it must be the case that each pure strategy

in the support of S∗
P achieves the payoff-rate of VO against SO . Equality must hold since S∗

P

is a best-response strategy. Thus each of the supporting pure strategies are best-response

strategies to SO themselves. A consequence of this result is that to find the exploitability of

a strategy SO and a corresponding best-response strategy, it is sufficient to determine the

payoff-rate of each of P’s pure strategies.

A strategy S1 is dominated by another strategy S2, if the expected payoff rate of S2 is at

least as high as the expected payoff rate of S1 for every possible strategy the opponent could

use, and is higher for some opponent strategies. It is said that S2 strongly dominates S1

if S2 has a strictly greater expected payoff against every opponent strategy, and S2 weakly

dominates S1 if there are opponent strategies against which both have the same expected

payoff. One of the first simplifying steps generally made when analyzing games is to assume

that neither player will play any easily identified dominated strategies (since the dominating

strategy has a higher expected payoff, the dominating strategy should always be substituted

in place of the dominated strategy); thus, one of the first steps when analyzing a game is to

identify dominated strategies and remove them from consideration. This process of removing

dominated strategies is iterative: when player P considers his opponent’s complete strategy

space, P’s strategy SA may not be better than another strategy SB against all opponent

strategies, but when P eliminates his opponent’s dominated strategies SA may dominate SB
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over this smaller set of opponent strategies. Similarly, after P removes dominated strategies

from his set of possible strategies, P’s opponent may find some strategies are dominated

against P’s reduced set of strategies.

One of the fundamental contributions to game theory is the Minimax Theorem, intro-

duced by John von Neumann [39, 40]. The theorem states that for each two-player zero-sum

game there exists a value V (known as the value of the game, which is unique) and strategies

S1 and S2 (which may not be unique) such that if P1 plays the strategy S1 then no matter

what strategy P2 plays, P1’s expected reward is at least V ; conversely, if P2 plays the strat-

egy S2, then no matter what strategy P1 employs, P1’s expected reward is no more than

V . The strategies S1 and S2 are often referred to as optimal strategies in the literature.

However, in order to reduce the confusion that this term may cause, these strategies will

be referred to henceforth as equilibrium strategies. In zero-sum games the value V is often

nonzero, as is the case in the game which will be introduced later in this chapter, Kuhn

Poker, whose value is -1/18. This means that in Kuhn Poker P2 has an advantage and that

by playing an equilibrium strategy he will win in the long run. To negate this advantage in

repeated games, players alternate positions which means each player plays half of the games

with an advantage and half of the games at a disadvantage.

It should be noted that in two-player games that are not zero-sum, equilibrium points

are defined by a pair of strategies (one for each player) and not all equilibrium points neces-

sarily achieve the same rewards for both players. Furthermore, if (S1, S2) and (S′
1, S

′
2) are

two equilibrium points, (S1, S
′
2) and (S′

1, S2) may not be equilibrium points. In contrast, if

(S1, S2) and (S′
1, S

′
2) are any two equilibrium points in a zero-sum game, then (S1, S

′
2) and

(S′
1, S2) must also be equilibrium points; this characteristic of zero-sum games allows equi-

librium strategies for each player to be identified independently of the opponent’s strategy,

rather than as a component of a specific equilibrium point.

If a player uses a strategy that is not an equilibrium strategy, it is said that he is

exploitable or that he is playing suboptimally. As stated above, players in repeated games

usually alternate positions so that neither player is always at an advantage brought on by his

seat position. This research treats the situations where a player is in P1 position as being

independent of the situations where the player is in P2 position, as the opponent being

modelled may play very differently when in P2 position than when he is in P1 position. The

objective of a player P is to take advantage of his opponent O’s mistakes for one or both of

the following subproblems: (i) when O is in P1 position, and (ii) when O is in P2 position.

All pure strategies can be partitioned into two categories: essential strategies (strategies

which are in the support of at least one equilibrium strategy) and superfluous strategies
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(strategies which are not in the support of any equilibrium strategy) [19]. Dominated

strategies make up a subset of the set of superfluous strategies. An important result from

the pioneering game theory research done by von Neumann and Morgenstern [40] is that

in any two-player zero-sum game, if one player plays an equilibrium strategy and the other

player plays any essential strategy (or any mixture of essential strategies), then the expected

reward for P1 is V , the value of the game. This interesting result can be seen in the simple

zero-sum game of Roshambo, where two players simultaneously choose one of three actions:

Rock, Paper or Scissors. If the two players choose the same action they tie (and both receive

a reward of 0). Otherwise Rock defeats Scissors, Paper defeats Rock, and Scissors defeats

Paper, and the player choosing the winning action receives a payoff of 1. The value of this

game is zero, and both players have the same equilibrium strategy, which is to choose each

of the three actions 1/3 of the time. Each of the three pure strategies (always-Rock, always-

Paper, always-Scissors) are essential strategies as all are components of the equilibrium

strategy. Consider what happens when P1 plays the equilibrium strategy and P2 plays the

always-Rock pure strategy: 1/3 of the time the players tie (both choose Rock), 1/3 of the

time P1 defeats P2 (P1 chooses Paper and P2 chooses Rock), and 1/3 of the time P2 defeats

P1 (P1 chooses Scissors and P2 chooses Rock), resulting in an expected winnings of zero for

both players. Thus when one player plays the equilibrium strategy in Roshambo, the other

player can play any essential strategy without reducing his expected winnings in the game.

Examples of the different types of strategies can be found in the simple matrix game

shown below; Max, who chooses a row, wants to maximize his payoff, while Min, who chooses

a column, wants to minimize the payoff received by Max. Both players choose their actions

(which row and which column to play) simultaneously (thus they both make their decision

before knowing the other’s), and Max receives the corresponding payoff listed in the matrix.

Min
c1 c2 c3 c4

Max r1 2 0 2 4
r2 1 4 2 0

Min’s pure strategy of playing c3 is dominated by the pure strategy of playing c1, so c3 is

identified as a dominated column and can be eliminated from consideration. Because Max

only has two options, his equilibrium strategy can easily be found graphically. Any strategy

for Max can be summarized by one parameter, p, the probability that Max plays row r1,

as he must then play r2 with probability 1− p. Figure 2.1 shows how Min’s pure strategies

perform against Max for every value of p, as well as the minimum expected payoff that Min

can force upon Max if Min knows Max’s strategy.

Max wants to obtain the highest expected payoff that he can guarantee; ie. even if Min
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Figure 2.1: Expected Value of Each of Min’s Pure Strategies vs. Max’s Mixed Strategy with
Parameter p

knows Max’s strategy, Min cannot reduce the payoff that Max expects. This occurs at the

point p = 0.6 where the “Minimum” plot peaks at 1.6. Thus Max’s equilibrium strategy is

to play row r1 60% of the time and r2 40% of the time and the value of the game is 1.6. By

the Minimax Theorem, any equilibrium strategy for Min will hold Max to the value of 1.6.

Note that if Min plays a mixed strategy with a nonzero probability y of playing c4, then

Max’s equilibrium strategy of playing r1 60% will achieve an expected payoff of 1.6 + 0.8y

which is higher than the value of the game. Therefore, the strategy of playing c4, which is

not a dominated strategy because it is the best counter-strategy for all of Max’s strategies

on the interval p < 1/3, must be superfluous and can be eliminated from consideration when

attempting to find Min’s equilibrium strategy.

Now that there are only two pure strategies to consider in finding Min’s equilibrium

strategy, it can also be found graphically. Let q be the probability that Min plays column c1

and 1− q be the probability that Min plays c2. Figure 2.2 shows how Max’s pure strategies

perform against Min for every value of q, as well as the maximum expected payoff that Max

can attain if Max knows Min’s strategy.

Min wants to limit Max to the lowest expected payoff that he can guarantee, which

occurs at the point q = 0.8, where the “Maximum” plot is at it’s lowest point. Thus there

is a unique equilibrium strategy for Min in this game and it is to pick c1 80% of the time
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Figure 2.2: Expected Value of Each of Max’s Pure Strategies vs. Min’s Mixed Strategy with
Parameter q

and pick c2 20% of the time, resulting in a mixed strategy with an expected payoff rate

for Max of 1.6 against both of Max’s pure strategies. This example game displays each of

the different categories of pure strategies that have been described: the two pure strategies

of just playing c1 and just playing c2 are essential strategies for Min, while playing c3 is a

dominated strategy, and playing c4 is a superfluous strategy that is not dominated .

Given these terms, it can now succinctly be described how a player can be exploitable.

There are three cases in which a player can play exploitably: (i) the player could use a

dominated strategy; (ii) the player could use a non-dominated superfluous strategy; or (iii)

the player could play only essential strategies, but in a mixture which does not make up

an equilibrium strategy. If player P (in P1 position for the following) uses an equilibrium

strategy against a type (i) player O1, P would expect that O1’s dominated errors will usually

allow P to gain a payoff rate higher than V ; however, it is also possible that P’s equilibrium

strategy will never guide O1 into a situation where he makes dominated errors. Similarly, if

P uses an equilibrium strategy against a type (ii) player O2, P may or may not exploit O2’s

errors. Finally, if P uses an equilibrium strategy against a type (iii) player O3, P will be

guaranteed not to exploit O3’s errors and will be assured of receiving the expected payoff

of V because of the fact that each essential strategy achieves the expected value V against

an equilibrium player; thus any mix of essential strategies achieves the value V against an
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equilibrium player. Exploitable players can fall into more than one of the above categories.

2.2 Solving Small Games

For completeness, a brief discussion of how basic two-player zero-sum games can be solved

is presented here (not all games reduce to two pure strategies for each player and can be

solved graphically). First note that a game can be represented by an m × n payoff matrix

A, where m (n) is the number of P1’s (P2’s) pure strategies, and matrix entry aij is P1’s

expected reward when he uses his ith pure strategy and P2 uses his jth pure strategy. A

strategy for P1 can now be represented as a probability vector ~x with m non-negative entries

that sum to 1 (the ith entry corresponds to the probability of playing the ith pure strategy);

similarly, a strategy for P2 can be represented as a probability vector ~y with n non-negative

entries that sum to 1. Let X be the set of all possible P1 strategy vectors and Y be the

set of all possible P2 strategy vectors. The expected reward for P1 using strategy ~x ∈ X

against P2 using strategy ~y ∈ Y is:

E[r|~x, ~y] = ~xTA~y.

where the T represents the transpose operation and matrix multiplication is performed.

For P1 to guarantee himself as high an expected reward as possible, he needs to find a

strategy which gives him the maximum expected reward even if P2 was told P1’s strategy

in advance (and plays a good counter-strategy). This corresponds to finding a strategy ~x∗

that maximizes

min
~y∈Y

(~x∗)TA~y.

Similarly, an equilibrium strategy ~y∗ for P2 is one that minimizes

max
~x∈X

~xTA~y∗.

Since each of P2’s (P1’s) essential pure strategies limit P1 to V when P1 (P2) plays an

equilibrium strategy, the problems simplify so that ~x∗ maximizes

min
1≤j≤n

(~x∗)TA~yj ,

where ~yj is the vector corresponding to the pure strategy of P2 playing the jth column; ~y∗

minimizes

max
1≤i≤m

~xTi A~y,

where ~xi is the vector corresponding to the pure strategy of P1 playing the ith row.

For sufficiently small games, these maximization/minimization problems can be solved

with linear programming techniques, as discussed in [12].
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2.3 Regret

The concept of regret is used to measure how well an adaptive playing algorithm A is

performing against an opponent O, with respect to some set of alternative playing strategies.

In contrast to the goal of maximizing the expected payoff against all opponents, which is the

goal when solving a game, regret pertains to the particular opponent that is being played

against. The term regret used in everyday language refers to a sense of loss that occurs

when one takes an action and wishes an alternative action leading to a different outcome

had been taken instead. In the context of measuring adaptive algorithms, two types of

regret are usually discussed: external and internal regret [2, 18, 20].

External regret describes the maximum amount of reward that has been lost by playing

the adaptive algorithm rather than the alternative of playing a fixed pure strategy. Suppose

an adaptive algorithm A is used in T consecutive games against O, and the reward xA(t)

is received after game t, for t = 1, . . . , T . External regret at time T , ERT , is defined as the

total of the rewards obtained by A subtracted from the total of the rewards obtained by

playing a best-response pure strategy to O:

ERT (A,O) = max
s∈S

(
T∑

t=1

xs(t)

)

−
(

T∑

t=1

xA(t)

)

,

where S is the set of pure strategies for the game being played, and xs(t) is the reward that

would have been obtained if the pure strategy s had been played at time t.

Internal regret considers the alternative of playing a learning algorithm A′ which acts

identically to A except with regard to some pair of pure strategies, s and s′. Whenever A

chooses the pure strategy s, A′ instead chooses the pure strategy s′; whatever probability

that A chooses to play s is shifted to s′ for the algorithm A′. Internal regret at time T ,

IRT , is defined as the total of the rewards obtained by A subtracted from the total of the

rewards obtained by playing the best alternative algorithm A′:

IRT (A,O) = max
A′

(
T∑

t=1

xA′(t)

)

−
(

T∑

t=1

xA(t)

)

,

where the maximization is over all possible pairs of pure strategies s and s′.

This thesis will primarily be concerned with external regret, as test opponents will be

using fixed strategies, which means that for each opponent there exists a pure strategy

that is a best-response strategy. If an opponent does not use a stationary strategy, then the

best-response strategy can change, and minimizing internal regret could be more important.

An algorithm’s average regret is defined as

AverageRT (A) =
1

T
RT (A).
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A property that is desired for most adaptive algorithms is that the average regret con-

verges to zero [9],

lim
T→∞

1

T
RT (A) = 0.

If an algorithm’s average external regret converges to zero, then it must be the case that

in the long term, the algorithm is almost always playing a best-response strategy to the

opponent.

2.4 Kuhn Poker

The testbed used for the majority of this research is the tiny game of Kuhn Poker [26], as it

is easily analyzed and is small enough that the effects of the opponent modelling methods

being used are not blurred by the sheer size of the game. A discussion of how the methods

can be applied to larger games is given in Chapter 7.

Kuhn Poker is a simple two-player poker game introduced and solved by H.W. Kuhn in

1950 [26]. The game is played with a three-card deck with the cards (in order from lowest to

highest rank) Jack, Queen, and King. The structure of the game (also shown in Figure 2.3)

is as follows:

• Each player pays an ante of $1.

• Each player is dealt a card and the remaining card is unseen by either player.

• P1 is now given the opportunity to bet $1 or pass.

– If P1 passes in Round One, then in Round Two P2 can:

∗ pass, in which case the game ends immediately in a showdown; or

∗ bet, in which case there is a third round where P1 is given the option to bet

and take the game to a showdown, or pass and forfeit the pot.

– If P1 bets in Round One, then in Round Two P2 can:

∗ pass (folding), in which case P1 wins the pot uncontested; or

∗ bet (calling P1’s bet) in which case the game ends immediately in a show-

down.

In the event of a showdown, both players reveal their cards and the player with the highest

card wins the pot. In this thesis the original notation presented by Kuhn will be followed

in all figures and bet sequences pertaining to Kuhn Poker. Thus at every decision node

the available actions will be to bet or pass. However, when discussing examples from Kuhn
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Poker and other games, conventional poker terms will be used; a bet that matches a previous

bet will be referred to as a call and a pass when facing a bet will be referred to as a fold.

Chance

C1 C2|

SD(1) +1 SD(2)

−1 SD(2)

Player 2 Choice Node Terminal NodePlayer 1 Choice Node

pass bet

pass bet

pass bet

pass bet

Round One

Round Two

Round Three

Figure 2.3: Game Structure of Kuhn Poker (SD(x) = Showdown, player with highest card
wins x)

The complete P1 strategy space is defined by three possible pure strategies for each card:

bet in Round One, pass in Round One and fold if P2 bets, or pass in Round One and call if

P2 bets. This gives rise to 3× 3× 3 = 27 pure strategies for P1. For P2, there are four pure

strategies for each card (two possible actions for each of the two information sets means

there are four possible combinations of actions), creating 4 × 4 × 4 = 64 pure strategies in

total. This is a large number of strategies for such a simple game, but fortunately there are

several dominated strategies that can be removed. First of all, neither player should ever

call a bet when holding the Jack, as they are sure to lose; conversely, both players should

always call bets when holding the King, as they are sure to win. The P2 strategy of passing

when holding the Queen and faced with a P1 pass weakly dominates the strategy of betting
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in the same scenario. Similarly, the P1 strategy of betting in the first round when holding

the Queen is weakly dominated by the strategy to pass and call a P2 bet (if such a bet is

made).

Once all dominated strategies are removed, P1’s strategy can be summarized by three

parameters, α, β, and γ, while P2’s strategy can be summarized by the parameters η and

ξ:

α = probability that P1 bets in Round One when holding the J

β = probability that P1 bets (calls) in Round Three when holding the Q

γ = probability that P1 bets in Round One when holding the K

η = probability that P2 bets (bluffing) in Round Two when holding the J

and P1 passed in Round One

ξ = probability that P2 bets (calls) after a P1 bet, when P2 holds the Q

Figure 2.4 shows the game tree for the game with dominated strategies removed; P1’s

nontrivial information sets (sets that have more than one element) and information leaf-sets

are marked with the letters A to F, while P2’s nontrivial information sets and leaf-sets are

marked with the letters R to W.

In later chapters, information sets in Kuhn Poker will be referred to by the card(s) known

and the betting sequence. For example, the P1 information set labelled A in Figure 2.4 will

be known as 〈J, ? : φ〉 while the P1 information set F will be notated 〈K, ? : bp〉, and the P2

information set V (which should not be confused with P1’s set F) will be notated 〈?, Q : bp〉.
Assuming neither player plays dominated strategies, the expected payoff rate (in $/hand)

for P1 is

EV =
1

6
[η(−3α+ γ) + ξ(−1 + 3β − γ) + α− β] (2.1)

Kuhn determined that equilibrium strategies for P1 are of the form (α, β, γ) = (γ/3, (1+

γ)/3, γ) for 0 ≤ γ ≤ 1. There is one equilibrium strategy for P2: (η, ξ) = (1/3, 1/3). The

value of the game is −1/18 (the game is a loss for P1). One of the main reasons why Kuhn

Poker is studied is that the equilibrium strategies contain both bluffing (betting a hand as if

it is strong when it is actually weak) and underbidding (not betting a strong hand in order

to possibly induce a bet from the other player), which are two interesting components of

larger poker games.

Eight pure strategies can be generated from P1’s three parameters (the corresponding
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J|Q J|K Q|J Q|K K|J K|Q

P1 Choice Node P2 Choice Node Terminal Node

−1 −2

−1

−2 +1

−1 −1 −2 +2

+1 +1 +1 +2+1

+2

+1

1/6 1/6 1/6 1/6 1/61/6

1−β 1−β β

1−γ

pass bet

pass pass

pass

pass

pass

pass

passpass

pass

pass pass

pass

pass passbet

betpass

betbet bet

bet bet

bet

bet

bet

bet

bet

bet

1−η 1−ξη ξ 1−ξ ξ
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1
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β

R RS ST TU U

V
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W

Figure 2.4: Kuhn Poker game tree with dominated strategies removed and information sets labelled

1
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payoff functions are also listed here):

S0 = (0, 0, 0) : EV0 =
1

6
(−ξ)

S1 = (0, 0, 1) : EV1 =
1

6
(−2ξ + η)

S2 = (0, 1, 0) : EV2 =
1

6
(−1 + 2ξ)

S3 = (0, 1, 1) : EV3 =
1

6
(−1 + ξ + η)

S4 = (1, 0, 0) : EV4 =
1

6
(−3η − ξ + 1)

S5 = (1, 0, 1) : EV5 =
1

6
(−2η − 2ξ + 1)

S6 = (1, 1, 0) : EV6 =
1

6
(−3η + 2ξ)

S7 = (1, 1, 1) : EV7 =
1

6
(−2η + ξ)

The strategy-space for P2 can be partitioned into 6 regions, as seen in Figure 2.5, within

each of which a single P1 pure strategy is maximal (on the points which divide the regions,

all bordering maximal strategies achieve the same value)1.

ξ

11/3

1/3

0

S
S

S

SS

S

1

6

1

5

2

3

4

η

Figure 2.5: Partition of P2 Strategy-space by Maximal P1 Strategies

An example of how this analysis is performed is as follows. First, note that if η > ξ,

then clearly 4η > 4ξ; subtracting 2ξ + 3η from both sides of this inequality, one obtains

−2ξ + η > −3η + 2ξ,

1The author would like to thank Valeriy Bulitko for his initial analysis of the game which provided this
partitioning.
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which shows that EV1 > EV6 whenever η > ξ. Similarly, it can be shown over the same

region that EV3 > EV2, EV5 > EV4 and EV1 > EV0 > EV7. Thus the only three strategies

that can possibly be best-response strategies in the region where η > ξ are S1, S3 and S5.

If ξ < 1/3 then

−2ξ + η >− 2

3
+ η

>(−1 + ξ) + η.

Therefore EV1 > EV3 whenever ξ < 1/3. If η > 1/3, then

−2ξ + η >− 2ξ +
1

3

>− 2ξ + (1 − 2η).

Therefore EV1 > EV5 whenever η > 1/3; putting all of this information together, S1 must be

the best counter-strategy for P2 strategies in the region where 1/3 < η < 1 and 0 < ξ < 1/3.

Similar reasoning can be applied to show that the strategies given in Figure 2.5 achieve the

highest expected payoff rates within their regions.

Note that there are no non-dominated superfluous strategies in this game; if player P

assumes that his opponent O will not play dominated strategies (which are relatively easy

to identify and avoid), then the only exploitable category O can fall into is the Type (iii)

category (players in this category use essential strategies in a non-equilibrium mixture).

Recall that playing an equilibrium strategy against a type (iii) player achieves only the

value of the game, which means that P can only hope to exploit O’s play if P deviates from

playing equilibrium strategies.

In the next chapter, the standard parametrization of Kuhn Poker will be used for an

opponent model and different ways of estimating the parameters will be attempted.
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Chapter 3

Explicit Modelling in Kuhn

Poker

3.1 Introduction

There are two basic types of opponent modelling that are studied in this thesis: explicit

modelling and implicit modelling. The first, explicit modelling, is the situation where the

modeller tries to infer his opponent’s strategy, by observing the opponent’s actions in dif-

ferent situations, and then computes a suitable counterstrategy. The second, implicit mod-

elling, is the situation where the modeller simply tries to find a good counterstrategy against

his opponent, without trying to identify the opponent’s strategy. Explicit modelling is the

focus of this chapter and the next chapter, while implicit modelling is studied in Chapter 5.

Two major issues that arise in explicit modelling are deciding how to gather observations

about an opponent and deciding how to make use of observations when generating a model.

This chapter deals with the second issue, exploring the problem of converting observations

of an opponent’s actions into estimates of that opponent’s strategy-defining parameters; the

next chapter discusses how these observations may be gathered and shows the effectiveness

of different data-gathering methods.

For this thesis, the strategy used by the player being modelled will be stationary through-

out each match. In this chapter explicit models will make single-point estimates of each of

the parameters being estimated. Another approach which has been used by others is to

maintain a probability distribution for each parameter which identifies the probability of

each possible value of the parameter given the observed data [36].

The next section of this chapter will describe how a player can decompose the parameter

estimation problem and generate parameter estimates given a set of game observations.

The third section describes how to combine solutions of the subproblems to form more
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reliable estimates. The fourth section of the chapter will show an example of how estimates

are computed in Kuhn Poker, and the final section summarizes the parameter estimation

method and its limitations.

3.2 Generation of Parameter Estimates

In the preceding chapter, the term strategy was introduced, as a complete description of how

to choose actions in every possible information set of the game in question. The parameter

model assumes that there is a parameter for each action of each information set, where each

parameter represents the probability of choosing the corresponding action when in that

information set. The main idea of determining a parameter model for an opponent is to

find the most likely set of parameters that would generate the decisions that the modeller

has been able to observe.

The problem is defined as follows. Player P wants to estimate the parameters defining

his opponent O’s strategy after P has been able to observe several of O’s decisions in several

different situations. Although P may not know O’s private information in all cases, P should

be able to draw conclusions based on the information he can observe. The approach for

estimation will be to simplify the problem as much as possible, by considering one opponent

parameter at a time (single-parameter problems), and also to consider the occurrences of

this parameter when the modeller’s hand is different as separate problems. For example, the

problem of modelling P2 in Kuhn Poker will be divided into two problems, estimating η and

estimating ξ; the problem of estimating η is further divided into the problems of estimating η

when P1 holds the Jack and estimating η when P1 holds the King (the problem of estimating

ξ is similarly divided). The modeller will create single-holding parameter estimates in these

simpler problems, and then combine these estimates in hopes of forming a better combined-

holding estimate for each parameter. Once each parameter has been estimated, the modeller

can compute an appropriate counter-strategy to use against the opponent.

It is assumed that the player doing the modelling has a perfect memory of everything

that has occurred in his match against his opponent. This is the concept of perfect recall, as

defined by Kuhn: “each player is allowed by the rules of the game to remember everything

he knew at previous moves and all of his choices at those moves” [25]. Thus this research

assumes that the modeller is able to use all of the information from his match with his

opponent, without forgetting any of the decisions he has been able to observe.

Before further discussion of how explicit modelling is performed can proceed, some details

of the game must be clarified. For simplicity, assume that each player has two possible

options at each decision node D, which will be denoted LD and RD; any game G can be
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converted to another game G′ with this binary property, as a decision in G where there are

n > 2 possible actions (a1, . . . , an) can be represented by a sequence of n − 1 decisions in

G′: for j < n − 1, the options for the jth decision are to (i) use action aj , or (ii) proceed

to decision j + 1. The options for the last decision are to (i) use action an−1, or (ii) use

action an. Since there are only two options at each decision, only one parameter needs to

be estimated as the second parameter can be computed from the fact that parameters at

each decision must sum to one.

Although O’s parameters may be interdependent, P can estimate each of O’s parameters

individually; thus the problem discussed here will be how P can estimate a single parameter,

αio,D, which denotes the probability thatO will take action L when holding handHio and the

sequence preceding the decision is D. For this research, Hio will represent all information

in the game that is private to O, while D represents the information public to both P

and O, consisting of L and R actions possibly interspersed with chance events. Suppose

also that before P takes his observations into consideration, P has an initial estimate of

αio,D = b̂io,D ∈ [0, 1]. The strength of this estimate (which will determine how much

influence this initial estimate has on later estimates of αio,D) will be denoted wio,D ≥ 0.

This strength is essentially the amount of fictitious data that is incorporated into the final

parameter estimate (eg. an initial estimate of 0.5 with a weight of 2 will have the effect of

pretending that the modeller observed his opponent in the situation two extra times and

that in one of those times the opponent took the L action).

Let N denote the number of times that O is in the information set 〈?, Hio : D〉. In the

long run, it is expected that the number of times that O takes action L in this situation,

NL, will be approximately N ∗ αio,D; thus a good approximation of αio,D is NL/N . If P

could identify O’s hand every time that O holds the hand Hio and the sequence D occurs,

then P’s estimate of αio,D, incorporating in the initial estimate, would be

α̂io,D =
NL + b̂io,D wio,D

N + wio,D

What makes the problem difficult is that P often does not know what O holds (for

example, in poker one of the two players could fold, which means they do not get to see

each others’ hands). Another issue that should be considered is that the hand held by P may

affect his observations, as he may play differently, making the sequence D and showdowns

after O’s action more or less likely. In addition, P knows that O does not hold the cards in

P’s hand. To address this issue, P can separately estimate αio,D for each possible hand Hj

that P can hold (suppose there are J such hands), and combine these estimates to form a

more accurate estimate afterwards. These single-holding estimators, which will be denoted
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α̂
(1)
io
, α̂

(2)
io
, . . . , α̂

(J )
io

(the preceding sequence D will be assumed a constant for the remainder

of this chapter) will fall into one of two categories: complete-information estimators or

partial-information estimators.

In the following paragraphs, the notation COUNT〈Hj , Hi : D1〉 will represent the actual

number of times that this situation has occurred in the match between P and O, although this

quantity may be unknown to one or both players. The quantity ˜COUNT〈Hj , Hi : D1〉 is an

estimate by the modeller of the actual number. Finally, the quantity count〈Hj , Hi : D1〉 will

represent the number of times the modeller has observed the occurrence of the information

set. In the event that the modeller is able to observe the information set every time it occurs,

the upper-case notation will be used. Whenever these quantities are used in formulas in this

chapter, the quantities are to be computed from the modeller’s observations.

3.2.1 Complete-Information Estimators

A complete information estimator, α̂
(jp)
io

, is an estimator derived from an information set

〈Hjp , ? : D〉, where P finds out O’s hand every time that O holds the hand Hio (no matter

what the ensuing bet sequence is). In this case, the single-hand estimate α̂
(jp)
io

is

α̂
(jp)
io

=
COUNT〈Hjp , Hio : DL〉 + b̂io wio,D/J

COUNT〈Hjp , Hio : DL〉 + COUNT〈Hjp , Hio : DR〉 + wio,D/J
(3.1)

The notation Da (where a is either L or R) represents the sequence D followed by the action

a. The strength of the initial estimate in each single-holding estimate has been scaled down

(divided by J ) so that when the single-holding estimates are combined, the initial estimate

will have the proper impact on the combined-holding estimates, as will be seen in Section 3.3.

An example of a complete-information estimator in Kuhn Poker occurs in the case when

P1 estimates P2’s η parameter when P1 holds the Jack. Figure 3.1 shows the portion of the

Kuhn Poker game tree where P1 holds the Jack and bets in Round One. Terminal nodes are

shaded to represent how transparent they are to the two players; terminal nodes that are

unshaded on the left side are transparent to P1 (P1 knows what card P2 held), and those

transparent on the right side are transparent to P2 (P2 knows what card P1 held). In this

case each terminal node is transparent to P1 because if P1 bets in Round One with the Jack

and P2 calls, then P1 will get to see P2’s card (which may be the Queen or the King) in

the showdown; if P2 folds after P1 bets, then P1 can deduce that P2 held the Queen since

it is a dominated action to fold the King. Since each of the terminal nodes is transparent

to P1, he has complete information in this case.
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Figure 3.1: Kuhn Poker - P1 Holds the Jack and Bets in Round One

3.2.2 Partial-Information Estimators

In most poker games, many hands end with a fold, and a player is often not able to conclude

what hand the other held. In Kuhn Poker, if P1 uses the equilibrium strategy corresponding

to γ = 0.5 and P2 uses his equilibrium strategy, then the proportion of hands that end

with a fold is 11/27 = 0.4074. Despite the lack of complete information, a player should

be able to use the available information (from hands that do have showdowns and from

actions observed in other hands) to create useful parameter estimates. The general idea is

to estimate the unknown quantities and then apply Equation 3.1. In the cases discussed

below, it is often assumed that showdown information is known about the L action but not

the R action; however, all of the methods can also be applied in the reverse cases, where

showdown information is known about the R action and not the L action.

One of the assumptions that is common to several of the following cases is that P has

an estimate of the probability that O holds Hio given that the preceding sequence is D and

P holds the hand Hjo . P can compute this probability estimate using a previous model of

O’s strategy, assuming P also knows the probabilities of all of the chance events involved.

The computation is formed by expanding conditional probabilities, following the definition

Pr(A|B) =
Pr(A,B)

Pr(B)
,
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where Pr(A|B) is the probability that A is true given that B is true, and Pr(A,B) is the

probability that both A and B are true. This substitution is applied repeatedly in the

following derivation:

Pr(O holds Hio |D, P holds Hjp) =
Pr(D, O holds Hio , P holds Hjp)

Pr(D, P holds Hjp)

=
Pr(D, O holds Hio , P holds Hjp)

∑I
i=1 Pr(D, O holds Hi, P holds Hjp)

=
Pr(D| O holds Hio , P holds Hjp) Pr(O holds Hio , P holds Hjp)

∑I
i=1 Pr(D| O holds Hi, P holds Hjp) Pr(O holds Hi, P holds Hjp)

.

Note that in the numerator and the denominator in the last line above the quantities on the

left-hand side are probabilities of sequences given the players hands and the quantities on

the right-hand side are probabilities of chance events. A method to compute the left-hand

quantities will be discussed in the following paragraphs, while the right-hand quantities can

be computed based on the rules of the game.

Let a` represent an action chosen by P, b` represent an action chosen by O, and c` repre-

sent a chance event. Then the probability of the sequence D = a1b1c1a2b2c2 · · · akbkck given

that the two players’ hands are Hj and Hi is the product of the conditional probabilities of

each event in the sequence:

Pr(D| O holds Hi, P holds Hj)

=

k∏

`=1

(

Pr(P takes action a`|D`−1, P holds Hj)

× Pr(O takes action b`|D`−1a`, O holds Hi)

× Pr(c`|D`−1a`b`, P holds Hj , O holds Hi)
)

(3.2)

where D` = a1b1c1 · · · a`b`c`. Each of the quantities on the right-hand side above are either

known (P should know his own action probabilities, as well as the probability of chance

events), or can be estimated by P from a previous model of O.

To simplify the notation, there will be no null events shown in the sequences in the case

when there is no chance event after a pair of player actions or in the event that one player

gets fewer actions than the other. For example, in Kuhn Poker the sequence of a P1 pass

followed by a P2 bet and a P1 calling bet will be represented by pbb.

Another estimate that is needed for some of the following cases is the probability of P

eventually identifying O’s hand when O holds Hio and P holds Hjp and the bet sequence is

Da. This estimate depends on the terminal nodes following Da where P can identify that O

holds Hio and the probability of reaching these terminal nodes given the two players’ hands

and strategies. Let ZDa be the set of terminal nodes following Da where P can identify that
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O holds Hio , and for each terminal node z ∈ ZDa let Dz be the sequence that reaches z.

Note that Da will be a subsequence of Dz for every z ∈ ZDa, since ZDa is a set of terminal

nodes which descend from the sequence Da. The estimate in question is

Pr(P observes O holds Hio | O holds Hio ,P holds Hjp , Da)

=
∑

z∈ZDa

Pr(Dz| O holds Hio , P holds Hjp , Da)

=
∑

z∈ZDa

Pr(Dz| O holds Hio , P holds Hjp)

Pr(Da| O holds Hio , P holds Hjp)
,

where these probabilities can be computed using Equation (3.2). The second equality holds

because

Pr(Dz| O holdsHio , P holds Hjp) = Pr(Dz, Da| O holds Hio , P holds Hjp)

= Pr(Dz| O holds Hio , P holds Hjp , Da)

× Pr(Da| O holds Hio , P holds Hjp).

Here the first equality follows from the fact that the presence of the sequence Dz implies that

the subsequence Da must have occurred, and the second equality follows from conditional

probability definition.

The following paragraphs discuss how to use the available information in several different

partial-information situations.

Complete Information on One Action, No Information on Alternative

This case assumes that P (holding Hjp) can identify O’s hand every time that O takes

action L after the sequence D, but P cannot identify O’s hand when O takes action R when

holding Hio . However, P may be able to observe or infer that O has a hand other than

Hio some of the times that O takes action R with a different holding. Using the method

just described, P can compute an estimate of the probability that O holds Hio given the

preceding sequence is D and that P’s hand is Hjp .

Suppose P has been in the information set 〈Hjp , ? : D〉 a total of COUNT〈Hjp , ? : D〉
times, and has observed O take action R a total of COUNT〈Hjp , ? : DR〉 ≥ 0 times. P has

also been able to identify that O did not hold Hio when taking action R a certain number of

times which will be denoted count〈Hjp ,¬Hio : DR〉. P estimates that the number of times

O has held Hio in the set 〈Hjp , ? : D〉 as

˜COUNT〈Hjp , Hio : D〉 = COUNT〈Hjp , ? : D〉 × Pr(O holds Hio | P holds Hjp , D). (3.3)

P knows COUNT〈Hjp , Hio : DL〉 (this is not an estimate), since P can identify that O

holds Hio every time that O takes action L with that hand. P then computes

c = ˜COUNT〈Hjp , Hio : D〉 − COUNT〈Hjp , Hio : DL〉 (3.4)
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and

u = COUNT〈Hjp , ? : DR〉 − count〈Hjp ,¬Hio : DR〉 (3.5)

The quantity c is a candidate answer and u is an upper-bound for the final quantity

needed for the parameter estimate, ˜COUNT〈Hjp , Hio : DR〉. P sets

˜COUNT〈Hjp , Hio : DR〉 =







0 if c ≤ 0
c if 0 < c < u
u if c ≥ u

(3.6)

Now P can compute an estimate α̂
(jp)
io

as in the complete-information case (Equa-

tion (3.1))

α̂
(jp)
io

=
COUNT〈Hjp , Hio : DL〉 + b̂io,D wio,D/J

COUNT〈Hjp , Hio : DL〉 + ˜COUNT〈Hjp , Hio : DR〉 + wio,D/J

Chance

betbet

T

1/6 1/6

K|J K|QC C

γ γ

pass betpass

1 1−η η

V
FF

Figure 3.2: Kuhn Poker - P1 Holds the King and Bets in Round One

An example of this situation in Kuhn Poker occurs in the case when P1 estimates P2’s

η parameter when P1 holds the King; the relevant portion of the game tree is shown in

Figure 3.2. If P1 bets in Round One with the King and P2 calls, then P1 will get to see P2’s

card in the showdown. If P2 folds after P1 bets, then P1 does not know whether P2 held

the Queen or the Jack. However, P1 knows that it was equally likely that P2 could have

held the Queen or the Jack after the deal and P1’s bet in Round One does not change the
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probabilities. P1 can use this information to estimate the number of times that P2 held the

Queen and then estimate the number of times P1 passed with the Queen in Round Two.

Since it is not obvious that the candidate answer c could be negative or larger than

the upper-bound u, examples are presented here showing these possibilities. Consider the

situation listed above, P1 estimating P2’s η parameter when P1 holds the King, and suppose

P1 has made the following observations:

COUNT〈K,?: b〉 = 4

COUNT〈K,Q: bb〉 = 3

COUNT〈K,?: bp〉 = 1.

Then

˜COUNT〈K,Q: b〉 = COUNT〈K,?: b〉 × Pr(P2 holds Q | P1 holds K, D = b)

= 4 × 0.5 = 2

and P1 computes a negative c:

c = ˜COUNT〈K,Q: b〉 − COUNT〈K,Q: bb〉

= 2 − 3 = −1.

Another example in Kuhn Poker where the modeller has complete information on one

action and no information on the alternative occurs when P2 is estimating P1’s α parameter

when P2 is holding the King. In this situation P2 has complete information when P1 bets

in the first round as P2 will always call with the King, but P2 gains no information if P1

passes in Round One and folds in Round Three after P2 bets. Suppose P2 has made the

following observations:

COUNT〈?,K: φ〉 = 6

COUNT〈?,K: b〉 = 0

COUNT〈?,K: p〉 = 6

count〈¬J,K: p〉 = COUNT〈Q,K: pbb〉 = 4

Then

˜COUNT〈J, K: φ〉 = COUNT〈?,K: φ〉 × Pr(P1 holds J | P2 holds K, D = φ)

= 6 × 0.5 = 3
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and P finds that c is larger than the upper-bound u:

c = ˜COUNT〈J,K: φ〉 − COUNT〈J, K: b〉

= 3 − 0 = 3

u = COUNT〈?,K: p〉 − count〈¬J, K: p〉

= 6 − 4 = 2.

Partial Information on One Action, No Information on Alternative

This case assumes that P (holding Hjp) can identify O’s hand some of the times that O

takes action L after the sequence D, but P can never identify O’s hand when O takes action

R. P also has an estimate of the probability that O holds Hio given the preceding sequence

is D and P’s hand is Hjp , and P has an estimate of the probability that he gets to observe

that O holds Hio when O takes action L.

Given that P has been able to observe that O held the hand Hio and took action L a

total of count〈Hjp , Hio : DL〉 times, P estimates the actual number of times that O held

Hio and took action L as:

˜COUNT〈Hjp , Hio : DL〉 =
count〈Hjp , Hio : DL〉

Pr(P observes O holds Hio | P holds Hjp , DL)
. (3.7)

P computes the estimates ˜COUNT〈Hjp , Hio : D〉, ˜COUNT〈Hjp , Hio : DR〉 and finally

α̂
(jp)
io

as was done for the previous case (complete information on one action, no information

on alternative) with the above estimate replacing COUNT〈Hjp , Hio : DL〉 in all of the

relevant formulas. There are no examples of this case in Kuhn Poker.

Partial/Complete Information on One Action, Partial Information on the Al-
ternative

This case assumes that P (holding Hjp) can identify O’s hand some or all of the times that

O takes action L and some of the times that O takes action R after the sequence D. P also

has an estimate of the probability that O holds Hio given the preceding sequence is D and

P’s hand is Hjp , and P has estimates of the probabilities that he gets to observe that O

holds Hio when O takes action L and when O takes action R.

There are two methods to deal with this case; the first method is to estimate both

quantities, COUNT〈Hjp , Hio : DL〉 and COUNT〈Hjp , Hio : DR〉 using Equation (3.7).

This method should be used if the probability of observing O’s hand is high for both of his

possible actions.
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The second method is to estimate one of the quantities, COUNT〈Hjp , Hio : DL〉 or

COUNT〈Hjp , Hio : DR〉, using Equation (3.7) and estimate the other using Equations (3.3),

(3.4), (3.5), and (3.6). This method should be used if the probability of observing O’s hand

is low for one or both of his possible actions. It is possible to switch between these two

methods of estimating the quantities if P finds that the probability of observing O’s hand

is very different from what he initially anticipated.

J|Q K|Q

Chance
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A C
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pass pass bet

1−η η

V
F

T

betpass
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1−γ

bet

1−η η
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1−α
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1

pass pass

α γ

pass

1/6

Figure 3.3: Kuhn Poker - P2 Holds the Queen

An example of this case in Kuhn Poker occurs when P2 estimates P1’s α parameter when

P2 holds the Queen, illustrated by Figure 3.3. If P1 passes in Round One, then P2 will also

pass and see P1’s card in the showdown. If P1 bets in Round One with the Jack, then P2

may observe it if he chooses to call (the safest strategy is to call 1/3 of the time), but will

not observe it if he chooses to fold. Thus if P2 calls with frequency η, then P2 will estimate

that the number of times P1 has actually bluffed with the Jack when P2 holds the Queen

is 1/η times the number of times P2 has called the bet and observed the Jack. So in this

case P2 has complete information on one of P1’s actions (passing) and partial information

on the other (betting).
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No Information on Either Action

This case assumes that P (holding Hjp) can never identify O’s hand when O takes either

action L or action R after the sequence D; P can only observe the number of times that

O takes each action. P does have an estimate of the probability that O holds Hi for each

possible i, given the preceding sequence is D and P’s hand is Hjp .

One possible way of dealing with the lack of information is to split the observed actions

between each possible hand, proportional to the probabilities of O holding each hand; in

this situation,

˜COUNT〈Hjp , Hio : DL〉 = COUNT〈Hjp , ? : DL〉 × Pr(O holds Hio | P holds Hjp , D)

˜COUNT〈Hjp , Hio : DR〉 = COUNT〈Hjp , ? : DR〉 × Pr(O holds Hio | P holds Hjp , D).

For example, if the information set 〈Hjp , ? : DL〉 has been observed 30 times, the information

set 〈Hjp , ? : DR〉 has been observed 20 times and the probability that O holds H1 is 0.2,

then P will estimate that O has taken action L with H1 a total of 30 ∗ 0.2 = 6 times and

taken action R with H1 a total of 20 ∗ 0.2 = 4 times. If the weight of the initial estimate is

low, then P’s estimate α̂
(jp)
1 will be close to 6/10 = 3/5. Suppose further that the probability

that O holds H2 in the same information set is 0.8; then P will estimate that O has held

H2 and taken action L 24 times and taken action R 16 times, giving an estimate α̂
(jp)
2 close

to 24/40 = 3/5.

This example illustrates the property of this method that each single-hand estimator

α̂
(jp)
i converges to the same value for every i (as the effect of the initial estimates decrease

as more observations are made):

α̂
(jp)
i → COUNT〈Hjp , ? : DL〉

COUNT〈Hjp , ? : DL〉 + COUNT〈Hjp , ? : DR〉 ∀ i

This is problematic, because P expects that O plays strong hands differently from weak

hands, but this method returns the same estimate for both types of hands. To counteract this

problem of each of the estimates α̂
(jp)
i having the same value, P can use more sophisticated

reasoning in splitting the observed actions between the various possible cards that O could

have held. One such way is to assume that certain properties that hold in P’s initial estimates

about O’s strategy also hold in the actual strategy that O is using; for example if P’s initial

estimate of αi1 is five times larger than his initial estimate of αi2 , then P could split the

data in such a way that α̂i1/α̂i2 = 5, preserving the ratio which the initial estimates satisfy.

Suppose O can hold one of the hands H1, H2, . . . , HI ; the first step is to compute ratios

ri such that P believes that αi/α1 = ri:

ri =
b̂i,D

b̂1,D
for i = 1, . . . , I
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P now estimates the number of times O has held each card, based on the probability of

O holding each card given the sequence S:

˜COUNT〈Hjp , Hi : D〉 = COUNT〈Hjp , ? : D〉 × Pr(O holds Hi | P holds Hjp , D) ∀i.

The number of times that P has observed O take action L is the sum of the times that

O has taken action L with each card:

COUNT〈Hjp , ? : DL〉 ≈
I∑

i=1

˜COUNT〈Hjp , Hi : D〉 × αi

≈
I∑

i=1

˜COUNT〈Hjp , Hi : D〉 × (ri α1)

= α1

I∑

i=1

˜COUNT〈Hjp , Hi : D〉 × ri

Finally P can estimate α1 by

α̂1 =
COUNT〈Hjp , ? : DL〉

∑I
i=1

˜COUNT〈Hjp , Hi : D〉 × ri

and estimate αio by the relationship α̂io = rio α̂1.

This situation does not arise in Kuhn Poker where one player receives no information

for both his opponent’s actions, but one could conceive of this occurring in games where

hand-mucking is allowed. Hand-mucking occurs when a showdown begins and one player

shows his hand and the opponent who called sees that he is beaten and concedes the pot

without showing his hand. In a game where mucking is allowed, a player with the best

possible hand might never get to see his opponent’s hand, whether the opponent folded or

called the last bet.

3.3 Combining Single-Hand Estimates

The approach to the estimation problem in this chapter began by decomposing the problem,

first into the problem of estimating just one of O’s parameters, and then further decomposed

into the problem of estimating the specific parameter when it occurs in one of P’s information

sets. It is possible that the parameter occurs in several of P’s information sets (once for

each hand that P could possibly hold and generate the sequence D). This section describes

how P can combine these single-hand estimates to achieve an estimate that is better than

each of the individual estimates. Specifically, P wants to find weights q1,io , q2,io , . . . , qJ ,io

to form an estimate

α̂io =

J∑

j=1

qj,io α̂
(j)
io
,
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where qj,io ≥ 0 ∀j and
∑

j qj,io = 1. There are several possibilities for how P could arrive

at these weights qj,io . One possibility is that P could give each estimate equal weight, by

setting qj,io = 1/J ∀j, but this does not adjust for the fact that some of the estimates may

have been formed with little or no data yet are receiving weight equal to estimates based on

much more data. Another possibility is to trust the estimate which has the most datapoints;

if the `th estimate has the most data, then set q`,io = 1 and qj,io = 0 ∀j 6= `. However, in

this case P ignores all the data used for the other estimates. A third possibility is to give

the estimates weights depending on how many datapoints they use; this can be achieved by

setting

qj,io =
COUNT〈Hj , Hio : D〉 + wio,D/J

COUNT〈∗, Hio : D〉 + wio,D
,

where

COUNT〈∗, Hio : D〉 =

J∑

j=1

COUNT〈Hj , Hio : D〉

This approach results in the following elegant formula for the combined estimate:

α̂io =

∑J
j=1 COUNT〈Hj , Hio : DL〉 + bio,Dwio,D
∑J
j=1 COUNT〈Hj , Hio : D〉 + wio,D

(3.8)

This method of combining the single-hand estimates will be the method used for all

combined-estimator results shown in this thesis.

Another way to combine the single-hand estimates is to give each estimate a weight in

relation to the confidence held in that estimate; in addition to giving estimators that use

more datapoints more weight, estimates with complete information would receive greater

weight than estimates with partial information. Studying the effectiveness of this approach

is a topic for future work.

3.4 Computing Estimates in Kuhn Poker

Figure 3.4 shows hypothetical frequencies for the terminal nodes reached after several Kuhn

Poker hands have been played between P1 and P2 (for example, the 〈J,Q: pp〉 terminal node

has been reached five times). Naturally, neither player knows all of the numbers given; for

example, when P1 holds the King and bets in Round One, he does not know that P2 passed

four times each with the Queen and the Jack, but P1 does know that P2 passed eight times

in total.

To slightly simplify the calculations, suppose that the initial estimates each have zero

strength, meaning that they will not factor into the calculations. The estimation problem

will first be considered from P1’s point of view and then from P2’s point of view.
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Figure 3.4: Kuhn Poker example (counts of visits to terminal nodes listed)
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3.4.1 P1 Modelling P2

Estimating η

The P1 estimator η̂(J) (the superscript (J) represents the case where P1 holds the Jack) is

an example of a complete-information estimator :

COUNT〈J,Q: bb〉 = 1

COUNT〈J,Q: bp〉 = 4

and the estimate is

η̂(J) =
COUNT〈J,Q: bb〉

COUNT〈J,Q: bb〉 + COUNT〈J,Q: bp〉 =
1

1 + 4
=

1

5

The estimator η̂(K) is an example of a partial-information estimator for which P1 has

complete information on one of P2’s actions, as there is a showdown when P2 calls P1’s bet,

and P1 has no information when P2 folds:

COUNT〈K,Q: bb〉 = 1

and

˜COUNT〈K,Q: b〉 = COUNT〈K,?: b〉 × Pr(P2 holds Q | P holds K, b)

= 9 ×
(

1

2

)

=
9

2

˜COUNT〈K,Q: bp〉 = ˜COUNT〈K,Q: b〉 − COUNT〈K,Q: bb〉

=
9

2
− 1 =

7

2

which gives the estimate

η̂(K) =
COUNT〈K,Q: bb〉

COUNT〈K,Q: bb〉 + ˜COUNT〈K,Q: bp〉
=

1

1 + (7/2)
=

2

9

Combining the two single-hand η estimates gives

η̂ =

(
5

5 + (9/2)

)
1

5
+

(
9/2

5 + (9/2)

)
2

9
=

2

19/2
=

4

19
.

Estimating ξ

The estimator ξ̂(Q) is an example of a partial-information estimator for which P1 has com-

plete information when P2 passes and partial information when P2 bets, as P1 gets to see

P2’s card if P1 chooses to call in Round Three

COUNT〈Q,J: pp〉 = 5.
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This particular P1 player has called frequently in Round Three when holding the Queen,

which means this player should use Formula (3.7) to estimate the number of times P2 has

held the Jack and bet:

˜COUNT〈Q,J: pb〉 = count〈Q,J: pbb〉/Pr(P1 bets in Round Three | P1 holds Q, pb)

= 3/

(
9

12

)

= 4,

which gives the estimate

ξ̂(Q) =
˜COUNT〈Q,J: pb〉

˜COUNT〈Q,J: pb〉 + COUNT〈Q,J: pp〉
=

4

4 + 5
=

4

9

The estimator ξ̂(K) is an example of a complete-information estimator as P1 will always

call with the King when P2 bets and the game goes directly to a showdown when P2 passes:

COUNT〈K,J: pb〉 = COUNT〈K,J: pbb〉 = 2

COUNT〈K,J: pp〉 = 4,

which gives the estimate

ξ̂(K) =
COUNT〈K,J: pb〉

COUNT〈K,J: pb〉 + COUNT〈K,J: pp〉 =
2

2 + 4
=

1

3

Combining the two single-hand ξ estimates gives

ξ̂ =

(
9

9 + 6

)
4

9
+

(
6

9 + 6

)
1

3
=

6

15
=

2

5
.

3.4.2 P2 Modelling P1

Estimating α

The estimator α̂(Q) (since P2 is now the modeller, the superscript (Q) now represents

P2 holding the Queen) is an example of a partial-information estimator for which P2 has

complete information when P1 passes (P2 will pass with the Queen and the game goes to a

showdown) and partial information when P1 bets, as P2 can choose whether or not to call:

COUNT〈J,Q: p〉 = COUNT〈J,Q: pp〉 = 5;

since this particular P2 has called with a frequency of 0.2 (twice in 10 opportunities) when

holding the Queen, he uses the methods discussed for the case of having complete information

on one action and no information on the alternative to estimate COUNT〈J,Q: b〉:

˜COUNT〈J,Q: φ〉 =
1

2
COUNT〈?,Q: φ〉 =

1

2
(19)

˜COUNT〈J,Q: b〉 = ˜COUNT〈J,Q: φ〉 − COUNT〈J,Q: p〉

=
19

2
− 5 =

9

2
.
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This gives the estimate

α̂(Q) =
˜COUNT〈J,Q: b〉

˜COUNT〈J,Q: b〉 + COUNT〈J,Q: p〉
=

9/2

(9/2) + 5
=

9

19

The estimator α̂(K) is an example of a partial-information estimator for which P2 has

complete information on one action (P2 always calls when P1 bets) and no information on

the alternative, as P2 always bets in Round Two and P1 will then fold the Jack:

COUNT〈J,K: b〉 = COUNT〈J,K: bb〉 = 5

and

˜COUNT〈J,K: φ〉 =
1

2
COUNT〈?,K: φ〉 =

1

2
(19)

˜COUNT〈J,K: p〉 = ˜COUNT〈J,K: φ〉 − COUNT〈J,K: b〉

=
19

2
− 5 =

9

2
,

which gives the estimate

α̂(K) =
COUNT〈J,K: b〉

COUNT〈J,K: b〉 + ˜COUNT〈J,K: p〉
=

5

5 + (9/2)
=

10

19
.

Combining the single-hand estimates of α gives

α̂ =

(
19/2

(19/2) + (19/2)

)
9

19
+

(
19/2

(19/2) + (19/2)

)
10

19
=

19/2

19
=

1

2
.

Estimating β

The estimator β̂(J) is an example of a complete-information estimator as when P1 calls in

Round Three there is a showdown, and when P1 folds in Round Three he must have held

the Queen:

COUNT〈Q,J: pbb〉 = 3

COUNT〈Q,J: pbp〉 = 1,

which gives the estimate

β̂(J) =
COUNT〈Q,J: pbb〉

COUNT〈Q,J: pbb〉 + COUNT〈Q,J: pbp〉 =
3

3 + 1
=

3

4

The estimator β̂(K) is a partial-information estimator for which P2 receives complete

information when P1 calls in Round Three and no information when P1 folds:

COUNT〈Q,K: pbb〉 = 6
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and

˜COUNT〈Q,K: pb〉 =
1

2
COUNT〈?,K: φ〉 =

1

2
(19)

˜COUNT〈Q,K: pbp〉 = ˜COUNT〈Q,K: pb〉 − COUNT〈Q,K: pbb〉

=
19

2
− 6 =

7

2
,

which gives the estimate

β̂(K) =
COUNT〈Q,K: pbb〉

COUNT〈Q,K: pbb〉 + ˜COUNT〈Q,K: pbp〉
=

6

6 + (7/2)
=

12

19
.

Combining the single-hand estimators of β gives

β̂ =

(
4

4 + (19/2)

)
3

4
+

(
19/2

4 + (19/2)

)
12

19
=

9

27/2
=

2

3
.

Estimating γ

The estimator γ̂(J) is a complete-information estimator as P2 can deduce that P1 holds the

King if he bets in Round One and will see the King in a showdown if P1 passes in Round

One:

COUNT〈K,J: b〉 = COUNT〈K,J: bp〉 = 4

COUNT〈K,J: p〉 = COUNT〈K,J: pp〉 + COUNT〈K,J: pbb〉 = 4 + 2 = 6,

which gives the estimate

γ̂(J) =
COUNT〈K,J: b〉

COUNT〈K,J: b〉 + COUNT〈K,J: p〉 =
4

4 + 6
=

2

5

The estimator γ̂(Q) is a partial-information estimator as P2 will see P1’s King in a

showdown if P1 passes in Round One, but will only see the King when P1 bets if P2 chooses

to call:

COUNT〈K,Q: p〉 = COUNT〈K,Q: pp〉 = 4;

since this particular P2 rarely calls (twice in 10 opportunities) with the Queen, he uses the

methods discussed in Section 3.2.2 to estimate COUNT〈J,Q: b〉:

˜COUNT〈K,Q: φ〉 =
1

2
COUNT〈?,Q: φ〉 =

1

2
(19)

˜COUNT〈K,Q: b〉 = ˜COUNT〈K,Q: φ〉 − COUNT〈K,Q: p〉

=
19

2
− 4 =

11

2
.
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This gives the estimate

γ̂(Q) =
˜COUNT〈K,Q: b〉

˜COUNT〈K,Q: b〉 + COUNT〈K,Q: p〉
=

11/2

(11/2) + 4
=

11

19
.

Combining the single-hand estimators of γ gives

γ̂ =

(
10

10 + (19/2)

)
2

5
+

(
19/2

10 + (19/2)

)
11

19
=

19/2

39/2
=

19

39
.

3.5 Summary

This chapter has given a detailed description of how to generate parameter estimates in order

to create an opponent model. Although the techniques presented in the previous sections

may seem complex, the basic idea is quite simple and is repeated here. The first step

is to decompose the whole modelling problem into single-hand single-parameter problems.

The next step is to use partial information and probabilities (from game properties and a

previous model of the opponent) to create fictitious data when the actual data is not known.

The third step is to create single-hand estimates of each of the parameters by substituting

the data (fictitious if necessary) into the complete information formula, Equation (3.1). The

final step is to combine single-hand estimates to achieve more adequate estimates that use

all of the available data.

There are several limitations to the parameter estimation approach. The first is that

when creating fictitious data, properties of the deal are assumed, such as if two hands are

equally likely, then it is assumed that each has actually occurred exactly the same number

of times. This assumption holds up in the long run (when equally likely hands have actually

been dealt nearly the same amount of times relative to the total number of deals), but may

cause inaccurate estimates in the short run. Another assumption that is needed is that the

modeller can estimate the quantity Pr(D| opponent hand). In large games with nontrivial

sequences this probability will depend on the strategy used by the opponent, and thus

knowledge of the opponent or good initial estimates are necessary for an accurate estimate

of this probability. Also, in large games it is expected that data will be sparse, which means

the parameter estimation method may not be practical (as most parameters will have no

data to estimate them), unless abstractions are done to reduce the number of parameters.

These abstractions would likely include unifying parameters (assuming that the opponent

plays similar hands identically) and linking parameters (assuming parameters may not be

independent).

Another assumption that is made is that the opponent does not play dominated strate-

gies. This can lead to bad estimates and counterstrategies which do not take advantage of
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the dominated plays by the opponent. This could be counteracted by including the domi-

nated strategies in the model of the opponent with heavily weighted initial estimates that

are close to zero. However, this could greatly increase the complexity of the model; if dom-

inated strategies are included in Kuhn Poker, the number of pure strategies available to P2

increases from four to 64 and the number of parameters increases from two to six.

Finally, the methods discussed here do not recognize when the opponent plays system-

atically in the repeated game (for example, if when put in a particular situation he bets

every odd time and passes every even time) or if the opponent sometimes switches between

strategies. This research is restricted to more basic opponents, as one of the objectives of

this study is to determine how quickly one can accurately estimate a single fixed strategy.

Recognizing when an opponent is dynamic and has changed his strategy could involve using

pattern recognition ideas (to see if the opponent’s recent actions match his previous pat-

tern) and the introduction of history decay into the data (giving recent observations more

emphasis in the estimates); this research is left for future work.

Although there are several limitations to the parameter estimation method, most do not

seriously hinder its application in Kuhn Poker, and should not prevent the method from

being applied in larger games, as long as the models for the opponent are kept simple. The

issue of how the methods can be scaled will be discussed in Chapter 7.
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Chapter 4

Data-Collection Methods for

Explicit Modelling

4.1 Introduction

This chapter continues the study of explicit modelling. While the last chapter described

what to do with the data that has been collected about an opponent O, this chapter focuses

on the issue of how the modeller P’s playing style affects the amount and quality of data

collected. Certain strategies used by P will guide the gameplay into situations where he

can learn more about one or more of O’s parameters. A key result is that in a set of

data-collection strategies that are equally exploitable (for example, the set of equilibrium

strategies) elements can have vastly different exploration values.

The modeller has three basic options for his playing strategy while collecting data about

the opponent being modelled: (i) the modeller can play within the space of equilibrium

strategies; (ii) the modeller can play non-equilibrium mixtures of essential strategies (pure

strategies which are part of some equilibrium strategy); or (iii) the modeller can play a

mixture of both essential and superfluous strategies (dominated strategies and other pure

strategies which aren’t part of any equilibrium strategy). The first option ensures that the

modeller will not leave himself open to exploitation during the data-collection process, while

the second and third options may allow the modeller to learn more quickly than if he only

used equilibrium strategies. One example of a dominated strategy that could be used to gain

more information is calling a bet with the worst hand, to observe what hand the opponent

holds in a showdown (even though the modeller is guaranteed to lose in the showdown).

Another example is to simply check (pass when there is no bet to call) or call with the best

hand rather than raising, also to see what the opponent has in a showdown rather than have

the opponent fold and not be able to observe his holding.
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This chapter will demonstrate the advantages and disadvantages of using different data-

collection strategies in Kuhn Poker. Models will be evaluated assuming that the modeller

uses a data-collection strategy for hands 1 to t, during the exploration phase, and then

stops collecting data. The model is then used to compute a counter-strategy, and this

counter-strategy is played from hand t+ 1 onwards, during the exploitation phase. Hand t

is referred to as the switching hand, as it is the hand at which the modeller switches from

the exploration phase to the exploitation phase.

This chapter will begin with the problem of P1 modelling P2 in Kuhn Poker, because P1

has the option of more than one equilibrium strategy to use, and the difference in exploration

values within this set of strategies is revealing. The problem of P2 modelling P1 will then

be discussed, and the idea of using a dominated strategy to learn more about an opponent

will be studied.

4.2 P1 Modelling P2 in Kuhn Poker

In Kuhn Poker, if α or γ is large, P1 will bet more often in Round One and have more oppor-

tunities to observe whether P2 will call a bet when holding the Q, thus gaining information

about η. If β is large or γ is small, P1 will have more opportunities to observe whether

P2 bluffs with the J , gaining information about ξ. This leaves two options for P1 to gain

information about P2: P1 can try to learn as much as possible about P2 while restricting

himself to playing safe equilibrium strategies, or P1 can play exploitable strategies which

do more exploration of P2’s strategy and thus should learn faster (but possibly at a greater

cost).

For this study, the exploration value of five P1 equilibrium strategies will be compared,

for the settings γ = {0, 0.25, 0.5, 0.75, 1} (recall that α = γ/3 and β = (γ + 1)/3 for equi-

librium strategies). In addition, three non-equilibrium “exploratory strategies” will also be

evaluated: ExploreEta = (α = 1, β = 1, γ = 1), which forces P2 into the most situations

where the η parameter is used; ExploreXi = (1, 1, 0), which forces P2 into the most situ-

ations where ξ is used; and BalancedExplore = (1, 1, 0.5), which will explore both of P2’s

parameters. These exploratory strategies are more exploitable than the equilibrium strate-

gies. The ExploreEta strategy has a minimum winning rate of −0.333 dollars per hand, the

ExploreXi strategy has a minimum winning rate of −0.5 $/hand, and the BalancedExplore

strategy has a minimum winning rate of −0.417 $/hand. In comparison to the equilibrium

data-collection strategies which ensure a winning rate of −0.0556 $/hand, these exploratory

strategies are risky to use, but the tradeoff in terms of information gained may prove to be

worth the risk.
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Using the minimum winning rates of the exploratory strategies to represent their riskiness

is misleading as it is rare that the opponent being modelled would actually be playing a best-

response strategy to the data-collection strategy. In such a case the opponent would likely be

easy to model since best-response strategies are usually pure strategies, which are generally

much easier to identify than mixed strategies. Thus some sense of the average winning

rates of the exploratory methods might better describe how risky it is use these strategies in

practice. Against randomly chosen opponents that have an exploitability of 0.0556 $/hand

(these opponents will be described in more detail in Section 4.2.1) the ExploreEta strategy

achieved an average winning rate of −0.0850 $/hand, the ExploreXi strategy achieved an

average winning rate of −0.0966 $/hand, and the BalancedExplore strategy achieved an

average winning rate of −0.0909 $/hand in experiments described in this chapter. Note also

that the exploratory strategies may actually win more against certain opponents than a safe

equilibrium strategy which limits the modeller’s winnings as well as his losses.

In the Kuhn Poker experiments shown in this chapter, the players being modelled are

all examples of the type (iii) exploitable player described in Chapter 2, meaning they play

essential strategies in non-equilibrium mixtures and never play any superfluous strategies.

Therefore the use of equilibrium data-collection strategies will each guarantee the equilib-

rium payoff rate of −0.0556 $/hand to P1 against each of the players being modelled, while

the exploratory strategies may have higher or lower payoff rates against the modelled play-

ers. Experiments will be shown illustrating both the risks and inadvertent rewards of using

an exploratory strategy.

4.2.1 Experimental Setup

For the experiments in this thesis, the player being modelled will play a static strategy,

and the modeller will collect data over the course of a match. For the experiments in

this chapter, the modeller’s data-collection strategy will also not change during the match.

However, after each hand is completed, the modeller’s opponent model will be updated and

then evaluated. The opponent model is evaluated by computing the best-response strategy

to the model and comparing this strategy to the true best-response strategy against the

opponent.

Results will be averaged over many trials, where a single trial consists of a 900-hand

match between the modeller (always in P1 position) and the opponent (always in P2 po-

sition). For each hand in a trial, one of the six possible holdings for the two players is

randomly chosen according to the uniform distribution. At each decision node the action

taken is randomly selected according to the distribution defined by the acting player’s strat-
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egy. In every trial in this section, the modeller begins with initial estimates (η = 0.5,

ξ = 0.5), each weighted by two fictitious datapoints.

11/3

1/3

1

η

S6

6o

S2

2o

3o
S3

1o

S1S5

5o4o

S4

0

ξ

X

Figure 4.1: P2 Strategies used in Experiments

One type of experiment that is performed in this chapter is to have a modeller use

each of the data-collection strategies against six different testpoints, where a testpoint is

an ordered pair (η, ξ) that defines a P2 strategy. The testpoints, plotted in Figure 4.1,

are O1 = (0.8, 0.29), O2 = (0.75, 0.8), O3 = (0.67, 0.4), O4 = (0.17, 0.2), O5 = (0.25, 0.17),

and O6 = (0.25, 0.67). The X in figure 4.1 marks the strategy corresponding to P1’s initial

estimate (0.5, 0.5). Results for each data-collection strategy and testpoint will be averaged

over 30000 trials. Individual testpoints vary in exploitability and other properties which

means results between the testpoints cannot be compared directly. Results from this study

are used to demonstrate some of the interesting outcomes and side effects that can occur

when explicitly modelling an opponent.

A second type of experiment is performed in this chapter in order to demonstrate the

average performance of each data-collection method. In this experiment, the modeller faces

a randomly generated opponent which has a fixed exploitability. Results are shown for

the exploitability settings 0.0556 and 0, and results are averaged over 200000 trials for

each data-collection strategy and exploitability setting. Prior to each trial, the opponent is

randomly assigned a strategy that loses to its best-response strategy at an expected payoff

rate of x $/hand. Since there are multiple methods of randomly assigning a strategy to the

opponent, the process used in this thesis is as follows. The first step is to choose which of
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Figure 4.2: Contours of opponent strategies with fixed exploitability

the six regions (see Figure 4.2) the opponent’s strategy will lie in, where each region has

a probability of 1/6 of being chosen. The selection of region and the exploitability setting

determine a line segment ` within the region that the opponent’s strategy must lie on, where

the equation for ` is E(αbr, βbr, γbr, η, ξ) = x, where E is the payoff-rate formula given in

Equation (2.1) and (αbr, βbr, γbr) is P1’s best-response strategy for the chosen region. A

point is uniformly chosen from ` to be the strategy used by the opponent. Figure 4.2 shows

the possible settings for the opponent strategies for both levels of exploitability. Results

from this study illustrate general trends among the data-collection strategies, indicating

which strategies should be used when little is known about the opponent.

Experimental results will be shown in three types of plots: payoff-rate plots, total win-

nings plots, and proportion-above-equilibrium plots. A payoff-rate plot shows the expected

payoff-rate the modeller would achieve if he stopped collecting data after t hands (for each

of these t hands the modeller is in P1 position) and began playing the best-response strategy

to his model. In Kuhn Poker this payoff rate can be computed directly from Equation (2.1)

given in Chapter 2. Figure 4.3 is an example of a payoff-rate plot, where the modeller (using

the equilibrium data-collection strategy with γ = 1) tends to quickly learn a model that

gives a good counter-strategy (after 200 hands against this opponent the counter-strategies

chosen in the different trials achieve an average value of 0.09 $/hand). However, finding the

counter-strategy which gives the maximum value against this opponent in all trials, where

the value is shown by the bold dotted horizontal line, can take a very long time. On all
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of the charts the horizontal axis is labelled “Switching Hand”, as the evaluation at hand t

assumes that the modeller switches from the exploration phase to the exploitation phase at

that hand.
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Figure 4.3: Sample Payoff-Rate Plot

An interesting thing to note in this sample payoff-rate plot is that against this opponent

the payoff rate at hand 0 is 0.0208 $/hand. This means that the counter-strategy to the

modeller’s initial model (created from fictitious data only) happens to be a good strategy

against this opponent, as it achieves a much better payoff rate than the equilibrium rate of

−0.0556 $/hand. The counter-strategy to the initial model will be very good against some

opponents (particularly opponents who play a strategy similar to the initial estimates) and

very bad against others. This means the starting point of the payoff-rate graphs will vary

greatly between testpoints.

A major concern of opponent modelling is how expensive the data-collection phase is,

and whether anything is gained in the short term by doing opponent modelling. A total

winnings plot assumes that the two players are playing a fixed-length match (of length H),

and thus the total winnings if the modeller switches to the best-response strategy after hand

t can be predicted as the sum of the winnings up until hand t plus the expected winnings

of the best-response strategy over the remainder of the match ((payoff-rate)*(H − t)). The

values on the horizontal axis start at 0, when the modeller has only his initial estimates

(based on fictitious data), and end at H , when the modeller has used his data-collection

strategy for the entire match.
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This type of plot allows one to see if there is an advantage to doing opponent modelling as

compared to just playing an equilibrium strategy, and also to identify the best time to switch

to the perceived best-response strategy. Figure 4.4, which shows the same data-collection

strategy and the same opponent as in Figure 4.3, is an example of a total winnings plot. The

plot shows that opponent modelling can be advantageous in a short match, and also shows

that the modeller may need to switch to best-response early in the match to make the most

of his opponents’ errors. Otherwise, as the end of the match gets closer, the modeller has less

time to exploit the errors and win a significant amount of money. Even though the model

of the opponent continues to get better (as shown by Figure 4.3), the benefits of improving

the model are outweighed by the cost of continuing to explore. Total winnings plots tend to

have a peak at around hand 40 or 50 when enough information has been learned to exploit

the opponent and the plots then steadily decline as the data-collection costs more than the

gains made by refining the model. The plots finish at the expected winnings for playing

the data-collection strategy for the entire match, as that is exactly what has occurred if the

modeller has not made the switch to best-response by then. As in the payoff-rate plots,

the start points (the values at Switching Hand 0) of the total winnings plots will also vary

greatly between testpoints, as the start point of the total winnings plot is precisely the start

point of the corresponding payoff-rate plot multiplied by 200.
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Figure 4.4: Sample Total Winnings Plot

The payoff-rate and total winnings plots show the average performance of the methods,

but do not tell the whole story. It could be the case that the methods do not perform
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well in many of the trials, but a few very good trials are bringing up the average. A

proportion-above-equilibrium plot shows what proportion of the trials at hand t have an

expected total winnings (for 200 total hands) above the amount that would be won by

receiving the equilibrium rate for the same number of hands. Figure 4.5 is an example of

a proportion-above-equilibrium plot and shows that against this opponent 95% of the trials

have an expected total winnings above the equilibrium value at hand 50. An interesting

thing to note is that playing an equilibrium strategy for the entire 200-hand match does

not guarantee the equilibrium rate. Equilibrium strategies have an expected winning rate of

−0.0556 $/hand, but equilibrium players don’t receive this value on every hand. In practice,

there is about a 50% chance of winning more than the equilibrium rate and a 50% chance

of winning less than the equilibrium rate when playing a static equilibrium strategy over

a 200-hand match. Thus the expected value for the equilibrium strategies is not only the

average but also the median in the distribution of match winnings.
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Figure 4.5: Sample Proportion-Above-Equilibrium Plot

Properties of the Testpoints

The first testpoint, O1 = (0.8, 0.29), is in the region where S1 = (α = 0, β = 0, γ = 1) is

the best-response strategy. This testpoint has a maximum exploitability of 0.0381 $/hand.

The exploratory data-collection strategies have low payoff rates against this testpoint, with

all having rates less than −0.2 $/hand, which is much lower than the equilibrium rate of

−0.0556 $/hand. Since the initial estimates (η = 0.5, ξ = 0.5) for the opponent are not
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too distant from the correct model and the payoff rates for the exploratory data-collection

strategies are much lower than the equilibrium rate, this testpoint will have the property

that a modeller using one of the exploratory data-collection strategies should switch from

exploration to exploitation very early in a match.

The second testpoint, O2 = (0.75, 0.8), is in the region where S2 = (0, 1, 0) is the best-

response strategy. This opponent is highly exploitable with a potential expected payoff

rate of 0.1 $/hand for P1. In addition, this opponent is very close to the region where

S3 is maximal, and thus S3 obtains the high payoff rate of 0.0917 $/hand against this

opponent. Thus it is expected that opponent modelling methods should usually find a good

counter-strategy, as there are two very good options, but it is likely that the actual best

counter-strategy will often not be identified in many of the trials, even after a large number

of hands. The exploratory strategies do not have high payoff rates against this opponent,

with each achieving a payoff rate less than −0.1 $/hand. Finally, the initial estimates held

by the modeller are that η and ξ are both 0.5, which suggest the counter-strategy of playing

either S2 or S3. These last two factors suggest that for this opponent it is best to switch

very early to the perceived best-response strategy when playing against him.

The third testpoint, O3 = (0.67, 0.4), is in the region where S3 = (0, 1, 1) is the best-

response strategy. This opponent is much less exploitable than the previous two, with P1

obtaining an expected payoff rate of 0.0111 $/hand when playing the best-response strategy.

The exploratory strategies have poor payoff rates against this opponent as well, with all

having rates less than −0.15 $/hand. Since the initial estimates are close to the correct

values, the results for this testpoint will suggest that the methods should switch from the

data-collection strategy to the perceived best-response strategy very early in the trials. In

Section 4.2.5 the effects of having different initial estimates and different weights on the

initial estimates will be shown; some of the experiments will show the ill effect of switching

early when the starting guess is not very close to the actual opponent strategy.

The fourth testpoint, O4 = (0.17, 0.2), is in the region where S4 = (1, 0, 0) is the best-

response strategy. This testpoint has a maximum exploitability of 0.05 $/hand and the

exploratory strategies have slightly higher payoff rates than the equilibrium value, ranging

from −0.0222 to −0.0167 $/hand. This point nearly borders the region where S5 is the

best-response strategy, and thus S5 achieves the high payoff rate of 0.0444 $/hand against

this opponent. Since the point is close to a border, it is expected that the modelling methods

will usually find one of the two good counter-strategies after a large number of hands, but

not necessarily the best counter-strategy.

The fifth test point, O5 = (0.25, 0.17), is in the region where S5 = (1, 0, 1) is the best-
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response strategy. This test point has a maximum exploitability of 0.0278 $/hand and the

exploratory strategies have payoff rates comparable to the equilibrium value. Since this

point is quite distant from its neighbouring regions, the modelling strategies should find the

best counter-strategy in most of the trials, although possibly after many hands since the

effect of the poor fictitious data must be overcome.

The final testpoint, O6 = (0.25, 0.67), is in the region where S6 = (1, 1, 0) is the best-

response strategy. This counter-strategy is exactly the ExploreXi strategy, which means

that the total winnings plot for this point will suggest that the modeller should never

switch from the ExploreXi data-collection strategy to the perceived best-response strategy.

In fact, all of the exploratory strategies have high payoff rates against this opponent in

comparison to the equilibrium value of −0.0556 $/hand: ExploreXi obtains the maximum

expected payoff rate of 0.0972 $/hand, ExploreEta has an expected payoff rate of 0.0278

$/hand, and BalancedExplore has an expected payoff rate of 0.0625 $/hand. This opponent

is highly exploitable which means opponent modelling methods should have a good chance of

winning more than the equilibrium value of the game. Furthermore, the test-point is located

relatively distant from the nearest bordering region, which means that the exploratory

strategies should identify the correct counter-strategy in a large percentage of the trials after

900 hands, because once the estimates are close to the correct values the point-estimate will

be in the correct region.

Table 4.1 shows the expected payoff-rates of the six pure strategies that are potential

best-response strategies against each of the six testpoints. The table headings are slightly

abbreviated, as EV [S,Oi] represents EV [x|S,Oi]. Table 4.2 shows the payoff-rates of the

different data-collection strategies against each of the testpoints.

S EV [S,O1] EV [S,O2] EV [S,O3] EV [S,O4] EV [S,O5] EV [S,O6]
S1 0.0381 -0.1417 -0.0222 -0.0389 -0.0139 -0.1806
S2 -0.0714 0.1 -0.0333 -0.1 -0.1111 0.0556
S3 0.0143 0.0917 0.0111 -0.1056 -0.0972 -0.0139
S4 -0.2810 -0.3417 -0.2333 0.05 0.0139 -0.0694
S5 -0.1952 -0.35 -0.1889 0.0444 0.0278 -0.1389
S6 -0.3048 -0.1083 -0.2 -0.0167 -0.0694 0.0972

Table 4.1: Expected Payoff-Rates of Candidate Best-Response Strategies against Testpoints

4.2.2 Equilibrium Data-Collection Strategy Comparison

For this study, P1 uses five equilibrium data-collection strategies, corresponding to γ =

{0, 0.25, 0.5, 0.75, 1}, and the combined-hand estimates described in Section 3.4.1 are used

to compute the opponent model. The payoff-rate plots for the two fixed exploitability values
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S EV [S,O1] EV [S,O2] EV [S,O3] EV [S,O4] EV [S,O5] EV [S,O6]
Equilibrium -0.0556 -0.0556 -0.0556 -0.0556 -0.0556 -0.0556
ExploreXi -0.3048 -0.1083 -0.2 -0.0167 -0.0694 0.0972
ExploreEta -0.2190 -0.1167 -0.1556 -0.0222 -0.0556 0.0278

BalancedExplore -0.2619 -0.1125 -0.1778 -0.0194 -0.0625 0.0625

Table 4.2: Expected Payoff-Rates of Data-Collection Strategies against Testpoints

and the six P2 testpoints are shown in Figure 4.6 and Figure 4.7.

The plots showing results against opponents of fixed exploitability (Figures 4.6(a) and

4.6(b)) show that the average payoff-rate of the model discovered by the γ = 0 strategy

is much lower than the other equilibrium data-collection strategies. Against opponents

with exploitability 0.0556 $/hand, the γ = 0 strategy is only reaching about 0.01 $/hand on

average. This is due to the fact that the γ = 0 strategy receives no information about P2’s η

parameter. The γ = 0.25 data-collection strategy achieves much better results, but the best

results are obtained by the γ = 0.5, γ = 0.75 and γ = 1.0 data-collection strategies. These

three strategies with the higher settings of γ all appear to have very similar average-case

results. In general, convergence to the maximum payoff-rate is slower in Figure 4.6.(b) than

in Figure 4.6.(a). The line segments making up the contour for opponents of exploitability 0

are half the length of the line segments making up the contour for the exploitability 0.0556

opponents, which results in the average distance of the exploitability 0 opponents to their

nearest bordering region being half that of the exploitability 0.0556 opponents. Being closer

to bordering regions makes it more difficult to identify the correct best-response strategy,

which causes convergence to be slower.

The payoff-rate plots for O2 and O3 (Figures 4.6(d) and 4.7(a)) exhibit an interesting

phenomenon that is present in many of the payoff-rate plots in this thesis; the average

payoff-rate at switching hand 0 is close to the maximal payoff-rate, but the average payoff-

rate decreases for about 10 hands before increasing back towards the maximum. This

phenomenon will be examined in much greater detail in Section 4.2.4, but the underlying

idea for why it occurs is that the initial model based on the initial estimates is “too good to

be true”; as variance in the models increases from early observations, the average payoff-rate

decreases as bad models are sometimes created.

The payoff-rate plots for O4, O5 and O6 (Figures 4.7(b), 4.7(c) and 4.7(d)) are all similar

in that the γ = 0 data-collection strategy does not converge to the maximum payoff-rate,

while the other data-collection strategies do converge to the maximum. As in the payoff-rate

plots for the opponents of fixed exploitability, the series corresponding to the three higher

settings of γ (γ = 0.5, 0.75 and 1.0) are all grouped very tightly together, while the γ = 0.25
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Figure 4.6: Equilibrium Data-Collection Strategies Payoff-Rate Plots
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data-collection strategy converges a little slower. The convergence to maximum is slightly

slower for O5 than for the other opponents because O5 is closer to the equilibrium point

(1/3, 1/3) than the other testpoints in Figure 4.1; thus it is more likely to mistakenly infer

that O5 is in a region that has a bad counter-strategy against O5 (such as S2, S3 or S6)

than it is the other testpoints.

Overall, the payoff-rate plots seem to suggest that better modelling occurs when γ is

higher and poor modelling occurs for very low values of γ. When γ = 0 the data-collection

strategy only succeeds when the initial estimate of η is very good, such as for testpoints O1,

O2, and O3. This is a repercussion of the fact that when γ = 0, P1 never puts P2 into a

situation where the η parameter is used, which means P1 can never learn about it. Thus

when using the γ = 0 equilibrium data-collection strategy, P1’s model can only shift up and

down from the point (η = 0.5, ξ = 0.5) in Figure 4.1.

The setting of the γ parameter allows P1 to focus the data-collection on either the η (high

γ) or the ξ (low γ) parameter. Setting γ to give equal consideration to both parameters

seems to result in the best equilibrium data-collection strategy against general opponents, as

the region diagram (Figure 2.5) is symmetric with regards to P2’s parameters, and it is also

nearly symmetric in terms of costs as well. Thus for the case of P1 modelling P2 in Kuhn

Poker it is not more important to be more accurate on the estimation of one parameter

than the other. It is the case in other games that some parameters are more important

than others, and thus the modeller can gain more by focusing learning on the important

parameters.

To gain datapoints with certainty (complete-information) about P2’s η parameter, the

J|Q deal must occur and P1 must bet in Round One; this event happens with probability

γ/18. To gain datapoints with certainty about the ξ parameter, the K|J deal must occur

and P1 must pass in Round One; this event happens with probability (1 − γ)/6. Thus for

P1 to expect equal numbers of datapoints with certainty in his estimates, the setting of γ

must satisfy
γ

18
=

1 − γ

6
.

Solving this equation gives the setting γ = 0.75. Each hand has a probability of being

a datapoint (certain or uncertain) which contributes to the η estimate of (γ/18) + (γ/6).

Each hand also has a probability of being a datapoint which contributes to the ξ estimate

of (1 − γ)/6 + 1/6. Therefore, to expect equal numbers of total datapoints, γ must satisfy

γ

18
+
γ

6
=

1 − γ

6
+

1

6

Solving this equation results in the setting γ = 6/7 ≈ 0.857. The setting of γ which achieves
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the least squares error in the estimates of both parameters is likely between 0.75 and 0.857.

The total winnings plots, shown in Figure 4.8 and Figure 4.9, show the expected value

of the various data-collection strategies for the horizon of 200 total hands. Since each

equilibrium strategy has the same expected winning rate, these series should appear in the

same order as in the payoff-rate plots (the winnings up to hand t should be the same for

each equilibrium strategy for every t).

In the total winnings plot showing the equilibrium data-collection strategies used against

opponents with a fixed exploitability of 0.0556, Figure 4.8(a), the best equilibrium data-

collection strategies are achieving positive expected total winnings, with the peak being

around hand 45. Thus against opponents of this exploitability, the use of opponent modelling

to find a good counter-strategy appears to be much more favourable than the alternative of

simply playing an equilibrium strategy throughout the match. Against opponents with the

lower fixed exploitability of 0, shown in Figure 4.8(b), opponent modelling appears to be

less useful, but is still a better alternative than settling for the equilibrium payoff-rate.

The total winnings plots for O1, O4, O5 and O6 (Figures 4.8(c), 4.9(b), 4.9(c) and

4.9(d)) all similarly show benefits of doing opponent modelling, with winnings higher than

equilibrium and a peak at around hand 40. The plots for O2 and O3 (Figures 4.8(d) and

4.9(a)) are different in that the expected total winnings starts very high and then decreases

over the course of the match. This is due to the fact that the counter-strategy to the initial

estimates is very good against these opponents, so any time spent on collecting data is

wasted; the model improves very little and a lot of winnings are sacrificed during the data-

collection period. The results for O2 and O3 suggest the rash conclusion that data-collection

is not useful and the modeller should just trust the initial estimates when determining a

counter-strategy. However, testpoints such as O4 and O5 are counter-examples to this

conclusion, as they are points where the initial model achieves a sub-equilibrium payoff-rate

and data-collection pays large dividends.

The purpose of doing opponent modelling when game theoretic solutions are known is

to attempt to win more than the value of the game. Figure 4.10 and Figure 4.11 show what

proportion of the trials have a higher projected total winnings than the equilibrium value as

a function of the switching hand. The results show that the modeller does better than the

equilibrium value in about 70 to 95% of the trials if he uses an equilibrium data-collection

strategy with a high setting of γ to learn and switches to a best-response strategy after

a reasonable number of hands; the plots suggest that in a 200-hand match, the modeller

should switch at about hand 50. Recall that playing an equilibrium strategy for the entire

match will only achieve the equilibrium payoff-rate 50% of the time, so modelling has been
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shown to be beneficial in each of the experiments.

Many of the proportion-above-equilibrium charts in Figure 4.10 and Figure 4.11 exhibit

an interesting sawtooth-shape, particularly evident in the γ = 0 series in Figure 4.11(b).

An explanation for this sawtooth shape is forthcoming in Section 4.2.4.

4.2.3 Exploratory Data-Collection Strategy Comparison

The main problem with using equilibrium data-collection strategies is that they can take a

very long time to collect useful data. P1’s equilibrium strategies in Kuhn Poker restrict α

to the interval [0, 1/3], but when P1 passes with the Jack in Round One (which happens

with probability 1− α in that situation), P1 cannot learn anything about P2’s parameters.

Similarly, when P1 folds with the Queen in Round Three (which happens with probability

1 − β in that situation), P1 does not get to observe what card P2 holds. This problem is

removed by the “exploratory strategies” which each have α and β set equal to 1; the final

parameter, γ, can be set to explore η (high γ) or ξ (low γ) more thoroughly. The three

exploratory data-collection strategies used in these experiments are ExploreEta = (1, 1, 1),

ExploreXi = (1, 1, 0), and BalancedExplore = (1, 1, 0.5). In the graphs shown in this

section, the equilibrium data-collection strategy corresponding to γ = 0.75 has been plotted

for comparison to the exploratory data-collection strategies.

It is evident from the payoff-rate plots in Figure 4.12 and Figure 4.13 that the exploratory

data-collection strategies do learn more quickly than the equilibrium data-collection strate-

gies. In each plot there is a gap between the exploratory strategies, which are typically

grouped tightly together, and the γ = 0.75 equilibrium data-collection strategy. In particu-

lar, when the initial model achieves a low payoff-rate against the opponent, as for O4 and O5,

the exploratory strategies recover much more quickly from the bad initial model. No single

exploratory strategy is shown to be superior to the others, as each exploratory strategy has

at least one testpoint for which it converges the fastest. Although the exploratory strate-

gies learn faster than the equilibrium data-collection strategies, the use of an exploratory

data-collection strategy is risky due to the fact that the value of the game is not assured.

The modeller could lose a large amount of money while collecting data.

The total winnings plots for the opponents having fixed exploitabilities, Figures 4.14(a)

and 4.14(b), show that although the exploratory strategies have lower average payoff-rates

during data-collection than equilibrium against these opponents, the improved models allow

for higher expected total winnings than the equilibrium data-collection strategy. However,

to attain the higher peaks in the total winnings graphs, the modeller must switch from

exploration to exploitation much earlier in the match, around hand 30.
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The risk of not being guaranteed the equilibrium payoff-rate is demonstrated particu-

larly by the total winnings plots for O1 and O3, Figures 4.14(c) and 4.15(a). For these

points the safe equilibrium data-collection strategy has a higher expected winnings than the

exploratory data-collection strategies, because the exploratory strategies lose a lot of money

while exploring. Conversely, the plots for O4 and O6, Figures 4.15(b) and 4.15(d), show the

advantage held by the exploratory strategies when they have higher payoff-rates than the

equilibrium value.

The plots showing the proportion of trials which achieve higher expected total winnings

at each switching hand than the equilibrium value are given in Figure 4.16 and Figure 4.17.

These plots show that if the data-collection strategy loses more than the equilibrium pay-

off rate against an opponent, then the modeller generally needs to switch to an exploitive

strategy earlier in the match to recoup his losses than if he was using an equilibrium data-

collection strategy. As before, each of the data-collection strategies have total winnings ex-

ceeding the equilibrium value in 70 to 95% of the trials regardless of the opponent. However,

the appropriate switching point now differs for many of the test-points, and the proportion

of exploratory strategies with total winnings above the equilibrium value can quickly drop

below 50% for some opponents, such as opponents O1 and O3. On the other hand, oppo-

nents such as O4 and O6 can make the exploratory strategies look deceivingly preferrable

to the equilibrium data-collection strategies. This occurs because the exploratory strategies

have higher than equilibrium payoff-rates against these opponents, which results in a large

proportion of trials finishing 200 hands with higher-than-equilibrium winnings.

4.2.4 Explanation of Graph Peculiarities

There are two peculiarities present in many graphs in this section that remain to be ex-

plained. The first peculiarity to explain is the dips, short periods in which the average

payoff-rate achieved by the model decreases rather than increases, that are present at the

beginning of several of the payoff-rate graphs. An example of such a dip occurs in Fig-

ure 4.6(d). The second peculiarity is the odd sawtooth shape exhibited in many of the

proportion-above-equilibrium plots, possibly most notably displayed by the γ = 0 equilib-

rium data-collection method in Figure 4.11(b).

The first peculiarity is relatively easy to explain. Against certain opponents, such as

O2, the initial estimates held by the modeller of his opponent’s parameters happen to result

in a counter-strategy that is very good against the opponent. Thus at hand 0, every trial

has a high expected payoff-rate against the opponent. Focusing on O2, there are two pure

strategies which have very high payoff-rates against this opponent, S2 and S3, which have
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payoff-rates of 0.1 $/hand and 0.0917 $/hand respectively. All other pure strategies have

payoff-rates less than −0.1 $/hand against O2. The counter-strategy to the initial estimates

(η = 0.5, ξ = 0.5) is to play each of S2 and S3 half the time; this strategy has an expected

payoff-rate of 0.0958 $/hand against O2.

Table 4.3 shows the number of trials for which the modeller suggests one of the good

counter-strategies (S2, S3, or half S2 and half S3), as well as the number of trials that the

modeller suggests some other counter-strategy, for the equilibrium data-collection method

with γ = 0.75. At hand 0, all 30000 trials have an expected payoff-rate of 0.0958 $/hand. As

the modeller collects a few hands of data, many of the sequences of observations will lead to

models that identify one of the good counter-strategies as the best strategy. However, some

sequences of observations lead to models that do not identify either S2 or S3 as the best

counter-strategy, which results in a huge decrease in the payoff-rate for the modeller in these

trials. Table 4.3 shows that for a small number of hands, a significant portion of the trials

can experience a sequence of observations leading away from the good initial estimates to a

bad model. After 7 hands, nearly 1/4 of the trials have experienced such a sequence, and

consequently the average payoff-rate decreases. As the number, t, of hands of data collected

increases, sequences of observations of length t leading to bad models become less and less

likely to occur. This is illustrated in the table by the increasing number of trials that find

a good counter-strategy from hand 8 onwards. As more and more trials recommend a good

counter-strategy, the payoff-rate increases.

In summary, at hand 0 the modeller in each trial has an identical model, that happens

to be very good. Due to bad luck in the first few observations, some trials produce models

with much lower payoff-rates. Because the marginal increase in payoff-rates made by the

trials which improve does not balance the large decrease in payoff-rates for the trials which

got worse, the overall average payoff-rate decreases, which explains the initial drop in the

payoff-rate plot. As the number of hands of data increases, sequences leading to bad models

become less likely, since these sequences consist of the modeller repeatedly observing events

which are unlikely based on the opponent’s parameter settings. As sequences leading to bad

models become less likely, the number of trials which find a good counter-strategy increases,

and this corresponds to the recovery of the data-collection methods in the payoff-rate plot.

The explanation of the peculiarity in the proportion-above-equilibrium plots is not quite

as intuitive as the explanation of the dips in the payoff-rate graphs. The fundamental idea is

that each trial’s winnings at each t must be an integer, while the minimum winnings required

to have projected total winnings above equilibrium is a real number that changes by small

fractional steps as t increases. When this threshold value crosses an integer boundary the
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t S2, S3, or S2/S3 Other Counter-Strategy Average Switching Payoff-Rate
0 30000 0 0.0958
1 28411 1589 0.0911
2 26467 3533 0.0831
3 24924 5076 0.0757
4 23936 6064 0.0698
5 23360 6640 0.0658
6 23036 6964 0.0630
7 22946 7054 0.0614
8 23014 6986 0.0604
9 23256 6744 0.0605
10 23597 6403 0.0614
11 23967 6033 0.0625
12 24309 5691 0.0638
13 24702 5298 0.0657
14 25070 4930 0.0676
15 25424 4576 0.0693
16 25794 4206 0.0713
17 26125 3875 0.0733
18 26345 3655 0.0746
19 26596 3404 0.0761
20 26794 3206 0.0774

Table 4.3: Frequencies of Different Suggested Counter-Strategies

status of all of the trials on the borderline suddenly changes in one timestep, leading to

either a jump or a dropoff in the proportion-above-equilibrium graph.

The example that is analyzed here is the γ = 0 data-collection method against O4.

Suppose every trial recommends the same counter-strategy S, for all t; let V0 be the payoff-

rate of this strategy versus the opponent. For trial i to have a projected total winnings

above equilibrium after hand t, it must be the case that i’s winnings over the first t hands,

wi(t), satisfies

wi(t) + (200− t) ∗ V0 > 200 ∗ (Equilibrium Payoff-Rate)

This gives rise to the condition that all trials which have winnings greater than wmin(t) have

projected winnings greater than equilibrium, where

wmin(t) = 200 ∗ (Equilibrium Payoff-Rate) − (200 − t) ∗ V0

= V0t + constant

Thus if V0 is negative, then wmin(t) decreases over time, which is the case for O4 and

the counter-strategy S1, which is the best counter-strategy that the γ = 0 equilibrium data-

collection method can find (since this method never receives data about P2’s η parameter,

if the fictitious data suggests η > 1/3, then the only counter-strategies that it can identify
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are S1, S2 and S3). Figure 4.18(a) is a histogram which shows the number of trials for

which wi(42) = w, for each of the different levels of winnings, w. Figure 4.18(b) is a similar

histogram for hand 43. These particular histograms are shown for three reasons. The first

reason is that by hand 42, S1 has been identified as the best counter-strategy in a majority

of the trials. The second reason is that by this point of the match the histograms do not

change much from one hand to the next; the equilibrium data-collection strategy has an

expected winning rate of −0.0556 $/hand, so there is a tiny leftward shift of mass in the

histograms. The third reason is that there is a jump in the proportion-above-equilibrium

graph between hand 42 and hand 43.

The missing piece of the puzzle is the behaviour of wmin(t) over this period; wmin(42) =

−4.9667, and wmin(43) = −5.0056. What this means is that at hand 42, all trials with

winnings of -4 or greater (and recommend the counter-strategy S1) are projected to have

total winnings above equilibrium. At hand 43, all trials with winnings of -5 or greater are

projected to have total winnings above equilibrium, increasing the number of trials above

equilibrium by roughly 1400.

Between jumps there is a slow decline in the proportion-above-equilibrium plot, as there

is a leftward shift of mass in the winnings histograms (recall that the expected payoff-rate

of the equilibrium data-collection strategy is −0.0556 $/hand). While the threshold wmin(t)

remains between a pair of integers x1 and x1 − 1 over such a period, there are a few less

trials with winnings of x1 or greater after each hand.

4.2.5 Changing the Initial Estimates

In the previous sections, the modeller begins with fictitous data that generates the initial

estimates (η = 0.5, ξ = 0.5) and each of these estimates is generated from 2 fictitious points,

for all of the experiments shown. These initial estimates can give the modelling methods very

high initial payoff-rates against some opponents, particularly against O2. This study varies

the initial estimates and the weight placed on the estimates for the parameter estimation

methods. The purpose is to see how the methods recover from bad initial models, as well

as to measure how more persistent initial models affect the results.

Figure 4.19 shows payoff-rate results for O1 = (0.8, 0.29) and O2 = (0.75, 0.8) with ficti-

tious data supporting bad initial models of (0.2, 0.75) and (0.15, 0.1) respectively. Results

are shown for the BalancedExplore data-collection method with four series shown on each

graph. The first series is the weak default estimates, which is the settings used for all

previous experiments shown (initial estimates are (0.5, 0.5) generated from two fictitious

points each). The second is the strong default belief, which is the initial model (0.5, 0.5)
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Figure 4.19: BalancedExplore Payoff-Rate Plots for Different Initial Estimates
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weighted by 20 fictitious datapoints each. The third and fourth series are the weak and

strong bad initial estimates, similarly weighted with two points and 20 points of fictitious

data respectively.

The plots show that when the modeller has weak bad initial estimates, they can easily

be overcome, and this series has nearly as high a payoff-rate as the weak default estimates

by hand 50. Strong initial estimates are harder to eliminate from the model, which is

why the payoff-rate for the strong bad initial estimates takes much longer to converge to

the maximum. For O1, the series corresponding to strong bad initial estimates has not

fully recovered by hand 200, due to the fact there is only one good counter-strategy for

this opponent (Table 4.1 shows that the best counter-strategy has a payoff-rate of 0.0389

$/hand while the second-best counter-strategy has a payoff-rate of 0.0143 $/hand). The

series corresponding to strong bad initial estimates for O2 converges much more quickly,

recovering by about hand 120, due to the fact that there are two very good counter-strategies

against this opponent.

The results suggest that it is safest to give the initial estimates a low weight, so that

they quickly become negligible when actual observations are made.

4.3 P2 Modelling P1 in Kuhn Poker

The case where P2 models P1 is quite different from the opposite case studied in the last

section; one major difference is that if P2 plays his equilibrium strategy, he expects to win

against P1 at a rate of 0.0556 $/hand. This means that P2 may be less motivated to change

strategies to take advantage of P1’s mistakes, as P2 already has a winning strategy. Another

difference is that P2 only has four possible pure counter-strategies, while P1 has six possible

pure counter-strategies in the opposite case. This difference suggests that P2 may have

more success in finding the best counter-strategy than P1 had in the last section. Another

difference is that P2 has to estimate three parameters as opposed to P1 estimating two,

which may make explicit modelling more difficult for P2. Another major difference is that

P2 has a unique equibrium strategy, (η = 1/3, ξ = 1/3), while P1 has an infinite number of

equilibrium strategies.

As in the last section, P2 has two options to gain information about P1. P2 can try to

learn as much as possible about P1 while restricting himself to playing within the space of

equilibrium strategies, or P2 can play exploitable strategies which do more exploration of

P1’s strategy in an attempt to learn faster. When playing an exploratory data-collection

strategy, P2 wants to set η high so that he calls bets when holding the Queen more often and

learns about P1’s settings of α and γ. To learn more about β, P2 should bet often with the
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Jack when P1 passes, which is achieved by setting ξ high. The strategy (η = 1, ξ = 1) will be

denoted ExploreAggressively in the plots in this section. This exploration strategy is highly

exploitable, as P1 could potentially win 0.167 $/hand against it. The safer data-collection

strategy (η = 2/3, ξ = 2/3), which has a maximum exploitability of 0.0556 $/hand, is

denoted ExploreModerately and is also shown on the plots in this section.

P2 also has the option of playing the dominated strategy of passing with the King in

Round Two when facing a pass, in order to learn what card P1 held when he passed rather

than be forced to guess what P1 held if he folds. This dominated strategy will help P2 learn

about α, but will prevent P2 from winning extra money from the cases when P1 would call

in Round Three with the Queen. P2 will also miss out on the chance to learn about β when

he plays the dominated strategy. The strategy where P2 makes this dominated error 25%

of the time he is put in that situation and otherwise plays the ExploreAggressive strategy

will be denoted as ExploreDominated in the plots in this section.

4.3.1 Experimental Setup

There are four strategy settings that are used for P1 when being modelled by P2 in this

chapter, allowing the modeller to face an opponent corresponding to each of the four dif-

ferent best-response strategies. The four P1 strategies, written in the form (α, β, γ), are

O′
1 = (0.2, 0.5, 0.9), O′

2 = (0.12, 0.65, 0.6), O′
3 = (0.25, 0.35, 0.3), and O′

4 = (0.35, 0.65, 0.7).

These opponents have different levels of exploitability and other significant differences, which

means the results between testpoints are not directly comparable.

A single trial consists of a 900-hand match, where the modeller remains in P2 position

and the opponent being modelled remains in P1 position. For each hand, the holdings

of the two players is randomly selected from the six possibilities according to the uniform

distribution. For each decision, the action selected is randomly chosen according to the

distribution defined by the acting player’s strategy. Results are shown for each of the four

test-points, where the results for each test-point are averaged over 30000 trials. For all of the

following experiments, P2’s initial estimates are (α = 0.5, β = 0.5, γ = 0.5), each generated

from two fictitious datapoints.

Properties of the Test Points

The first test point, O′
1 = (0.2, 0.5, 0.9), is in the region where (η, ξ) = (0, 1) is the best-

response strategy, which achieves a payoff rate of 0.1167 $/hand for P2. The Explore-

Aggressively strategy wins against this opponent at a slightly higher payoff rate than the

equilibrium strategy, at a rate of 0.0667 $/hand, which means there is a good chance that the
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ExploreAggressively strategy will be the most successful data-collection strategy. However,

since the initial estimate for the β parameter is actually correct, the ExploreDominated

strategy may prove more successful as it focuses more learning on the α parameter while

sacrificing exploration of the β parameter.

The second test point, O′
2 = (0.12, 0.65, 0.6), is in the region where (0, 0) is the best-

response strategy, which achieves a payoff rate of 0.0883 $/hand. This test point is unique

in that the three P2 pure strategies which are not the best-response strategy achieve lower

payoff rates than the equilibrium strategy. This means if P2 does not find the best counter-

strategy he will not do as well as he would by just playing the equilibrium strategy for the

match.

The third test point, O′
3 = (0.25, 0.35, 0.3), is in the region where (1, 1) is the best-

response strategy, which achieves a payoff rate of 0.1333 $/hand. This test point is the

opposite of the previous test point in that three of P2’s pure strategies achieve a higher

payoff rate than the equilibrium rate. It is expected that the ExploreAggressively strategy

will perform very well against this opponent, as the ExploreAggressively strategy is exactly

the best-response strategy.

The fourth test point, O′
4 = (0.35, 0.65, 0.7), is in the region where (1, 0) is the best-

response strategy, which achieves a payoff rate of 0.1083 $/hand. The ExploreAggressively

strategy has a payoff rate of 0.0667 $/hand, which is slightly higher than the equilibrium

rate. Once again, this suggests that the ExploreAggressively strategy may be the most

successful data-collection strategy.

4.3.2 Experimental Results

The payoff-rate plots shown in Figure 4.20 once again show that the exploratory data-

collection strategies learn faster than the equilibrium data-collection strategy. The Explore-

Aggressively strategy seems to consistently learn better models than the ExploreDominated

strategy, as a side-effect of playing the dominated strategy to learn more about the α pa-

rameter is that there are fewer opportunities to learn about the β parameter. The plots

suggest that this is a bad tradeoff. Between the exploratory strategies, ExploreAggressively

learns slightly faster than ExploreDominated, which in turn learns slightly faster than Ex-

ploreModerately, for each of the test opponents. The payoff-rate plots for O′
3 and O′

4 exhibit

the initial dips discussed in Section 4.2.4, again due to the high payoff-rates of the initial

models, which leaves little room for improvement but lots of room for deterioration.

The total winnings plots shown in Figure 4.21 show the price paid by the ExploreDom-

inated strategy for using the dominated strategy, as ExploreDominated has a noticeably
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smaller total winnings than the ExploreAggressively strategy for every testpoint. A mislead-

ing property of these experiments is that the ExploreAggressively strategy has a payoff-rate

higher than the equilibrium value against three of the four testpoints. This seems to sug-

gest that it is a good strategy to use to collect data, as in addition to collecting more data

than the equilibrium data-collection strategy, the ExploreAggressively strategy does not

risk much by playing in an exploitable fashion. However, a different selection of testpoints

(maintaining the property of having one test opponent for each counter-strategy) could have

had the opposite property, with ExploreAgressively achieving lower than equilibrium rates

against three of the four testpoints.

Figure 4.22 shows the proportion-above-equilibrium plots for the four testpoints. In the

plots for O′
1 and O′

4, the different strategies are all grouped closely together, meaning none

appear much more favourable than any other. In contrast, the plot for O′
2 has only the

equilibrium data-collection strategy ever rising above the line representing equilibrium play,

making it the clear favourite to use against this opponent. The plot for O′
3 exhibits the

opposite result, as each of the exploratory strategies have winning rates higher than the

equilibrium rate against this opponent. This results in the exploratory strategies having the

best results against O′
3.

4.4 Conclusions

The results shown in this chapter have shown the effectiveness and some of the limitations

of explicit modelling. One surprising result is that the modeller does not always converge

to the best-response strategy, even after a large number of hands. While this would not be

surprising in a large game where there are a huge number of situations to keep track of and

data is sparse, this is surprising in the tiny game of Kuhn Poker.

There are several reasons why there is a lack of total convergence within 900 hands. One

reason is that when a player uses a nondeterministic strategy, there is a certain amount

of variance that is expected to be present. For example, if a player chooses action L in a

given situation with probability 0.7, and the player faces that situation 10 times, he will

not necessarily take action L 7 times (which would provide the correct estimate). However,

as the player is put into that situation more and more often, the proportion of times he

chooses L will converge to 0.7.

A second reason why there is slow convergence is that Kuhn Poker is a game of imperfect

information and partial observability, meaning that for estimates to be made, assumptions

about the modelled players hidden cards must be made. The assumptions described in this

thesis depend on the different deals of the game occurring an equal number of times. It
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is unlikely that this will happen exactly, although the number of occurrences of each deal

should be relatively close after a large number of hands.

Regardless of the reasons, it appears that it’s more difficult to converge to the best-

response in all cases than might be expected. The lack of convergence does not diminish

the many interesting results which were demonstrated in this chapter.

One important result is that among a set of data-collection strategies which have a fixed

exploitability, there can be a wide range of exploration values. Thus not all equilibrium

strategies are equally valuable, even though each achieves the same payoff-rate against a

competent opponent (one who does not use superfluous strategies). In the Kuhn Poker

experiments shown, the P1 equilibrium strategies corresponding to γ = 0.75 and γ = 1.0

are efficient in collecting data for opponent models. On the other hand, the equilibrium

strategy corresponding to γ = 0 can produce terrible models, as it gains no data on P2’s η

parameter, as it never puts P2 into a situation where the parameter applies. The goal of

finding solutions to games is to find some strategy that is the least exploitable; when solving

games in the future, one should not be satisfied with simply finding a solution, but should

also try to find a solution with a high exploratory value.

One question that is difficult to answer is whether an exploitable strategy should be

used to collect data, or whether the modeller should play it safer and stick with equilibrium

strategies to collect data. Although the use of exploratory data-collection strategies does

put the modeller at risk of losing more than he would by playing equilibrium strategies, the

information gained be the use of exploratory strategies can often result in higher expected

total winnings. Additionally, the exploratory strategy used may win more than the equi-

librium rate against the opponent. On the other hand, there are certain opponents which

will exploit a modeller using an exploratory strategy, and the winnings the modeller loses

during the data-collection period may be impossible to recuperate. The guarantee of the

equilibrium expected payoff-rate is a very nice property of the equilibrium data-collection

methods.

In the experiments shown here, the use of dominated strategies to explore did not improve

the learning rate. This is because the use of the dominated strategy sacrificed exploration of

another opponent parameter. In larger games there exist dominated strategies which do not

make this sacrifice, and it is expected that they would improve the learning rate. However,

the use of dominated strategies is very likely to lose money, so the value of the improved

model may be offset by the losses incurred during data-collection.

Another interesting result in this chapter is that the switching hand that maximizes the

expected total winnings for the modeller doesn’t seem to change much from one testpoint to
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the next. In particular, hand 50 is a reasonable switching hand for every test opponent when

using a good equilibrium data-collection strategy; when using an exploratory data-collection

strategy, the maximal switching hand often occurs earlier, as the losses of the data-collection

strategy quickly outweigh the diminishing gains of improvements to the model.

One final result that may have gone unnoticed is that the use of explicit modelling with

a good equilibrium data-collection method has shown at least a minor improvement against

every test opponent over the alternative of strictly playing an equilibrium strategy. Thus

the use of explicit modelling has not produced any results which suggest that these methods

should not be used.

The next chapter explores the idea of implicitly modelling an opponent and examines

the effectiveness of such methods in experiments.
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Chapter 5

Implicit Modelling

5.1 Introduction

While the last two chapters have focused on explicitly modelling an opponent, this chapter

is devoted to the task of implicitly modelling an opponent. Explicit modelling involves

identifying the opponent’s strategy in order to determine a counter-strategy that takes

advantage of the opponent’s mistakes. Implicit modelling simply involves identifying a good

counter-strategy while being oblivious to the precise nature of the mistakes the opponent is

making. The opponent modelling methods used in this chapter will try different strategies

against the opponent, evaluate each strategy’s performance, and recommend the counter-

strategy with the highest score.

The methods discussed in this chapter are derived from the Hedge and Exp3 algorithms

designed by Auer et al [2]. These algorithms were developed for multi-armed bandit prob-

lems1, in which one player has to choose which of K different slot machines to play and

receives some reward from the chosen machine; the opposing player gets to choose what

reward is available for each machine prior to the first player’s choice. This is analogous

to a matrix game where prior to the game being played the column player chooses which

column he is going to play; the row player’s possible rewards are then set, and he receives

the reward corresponding to the row he chooses to play.

Implicit modelling will consist of two phases: exploration, where various counter-strategies

are used against the opponent and evaluated, and exploitation, where the highest-scoring

strategy (or strategies, if two or more strategies are tied with the highest score) are played

against the opponent. As in the explicit modelling case, a major concern of implicit mod-

elling is when to switch from exploration to exploitation. If the modeller chooses to exploit

1Coin-operated gambling machines (called slot machines in this thesis) that are played by inserting a
coin and pulling a handle (an “arm”) on the side of the machine have been nicknamed “one-armed bandits”,
due to the large amounts of money taken in by the machines from players.
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his model too soon, then he may have a counter-strategy which does not perform well against

the opponent. However, if the modeller waits too long to begin exploiting his opponent,

he may not have enough time to recover the losses incurred during the exploration phase.

The Exp3 and Hedge algorithms allow the modeller to adjust his strategy during the data-

collection phase to use a more exploitive data-collection strategy, and possibly incur fewer

losses, as well as focus data-collection on promising counter-strategies. The two parame-

ters in the Exp3 and Hedge algorithms, ψ and ρ play key roles in the exploration versus

exploitation issue. The ψ parameter in the Exp3 algorithm controls the amount of uniform

exploration among potential counter-strategies used by the modeller while exploring. The

ρ parameter controls the amount of emphasis placed on playing the highest-rated strategies

during the exploration phase.

Because the algorithms created by Auer et al. were designed for a slightly different prob-

lem than the one studied in this thesis, there are some modifications which can be made to

improve the performance for this problem. These modifications are discussed in Section 5.3.

This chapter will proceed by describing the algorithms presented by Auer et al., and show

experimentally that the algorithms are inadequate for the problem being studied. The

modified algorithms are then presented with justifications for the modifications, along with

further experimental results which verify that the modifications improve the performance

of the basic algorithms.

5.2 The Hedge and Exp3 Algorithms

The Hedge algorithm is designed for the full information multi-armed bandit problem. For

this problem, each trial consists of the adversary first setting the rewards available to each

slot machine, and then the player choosing one slot machine to play; the player then receives

the corresponding reward. In the full information problem the player also learns what

rewards were available at each of the other slot machines.

The Hedge and Exp3 algorithms are given below. Note that the parameter γ in Exp3

has been changed from the original publication to ψ to avoid confusion with the Kuhn Poker

γ parameter.
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Algorithm 1: Hedge

1. Parameter: a real number ρ > 0

2. Initialization: Set Wi(0) = 0 for i = 1, . . . ,K (K is the number of experts)

3. Repeat for t = 1, 2, . . . until match ends

(a) Choose action it according to the distribution p(t), where

pi(t) =
(1 + ρ)Wi(t−1)

Zt

where Zt is a normalizing factor that ensures that the probabilities sum to
one:

Zt =
K∑

j=1

(1 + ρ)Wj(t−1)

(b) Receive a reward vector ~x(t), where xi(t) ∈ [0, inf) for i = 1, . . . ,K
(c) Set Wi(t) = Wi(t− 1) + xi(t) for i = 1, . . . ,K

The basic idea of the Hedge algorithm is to focus play towards actions which have

resulted in high rewards in the past. This is accomplished by keeping running totals of the

rewards assigned to each action, and then assigning a probability to playing each action that

is exponentially related to the total for it. The ρ parameter controls how much emphasis is

put on playing the action with the highest cumulative reward. A large ρ (eg. ρ = 100), will

cause the player to choose among only the actions with the highest cumulative reward on

each trial with very high probability, while a small ρ (eg. ρ = 0.01) will cause the player to

choose among all of the actions in each round with near-uniform probability.

The Exp3 algorithm is designed for the partial information bandit game, where the

player only receives information about the reward for the slot machine he chooses to play.

The basic idea of the algorithm is to simulate the full information game by supplying Hedge

with a reward vector that contains the actual reward received for the chosen action (scaled

by the probability of choosing the action) and rewards of value 0 for the actions not chosen.

Since information is only gained about one action for each trial, the Exp3 algorithm contains

the parameter ψ which ensures that the player will not just pick one action throughout the

trials; otherwise if all rewards are nonnegative the machine chosen in the first trial could

immediately start out with a nearly insurmountable lead, being repeatedly chosen since it

has the only nontrivial probability. A setting of ψ = 1 corresponds to all actions being

chosen from uniformly on every round, while the setting ψ = 0 corresponds to the most

exploitive case where experts that have been used and well-rewarded in the past are highly

favoured to be chosen repeatedly.
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Algorithm 2: Exp3

1. Parameters: reals ρ > 0 and ψ, 0 ≤ ψ ≤ 1

2. Initialization: Initialize Hedge(ρ)

3. Repeat for t = 1, 2, . . . until match ends

(a) Get distribution p(t) from Hedge

(b) Select action it to be j with probability p̂j(t) = (1 − ψ)pj(t) + ψ
K

(c) Receive reward xi(t) ∈ [0, 1]

(d) Feed simulated reward vector x̂(t) into Hedge, where

x̂j(t) =

{
xi(t)
p̂i(t)

if j = it
0 otherwise

}

The reward is scaled (divided by the probability of choosing the action taken) so that

the expected total reward for each action equals the total reward for the full information

game. The expected total reward for expert j after T rounds is:

EV [

T∑

t=1

x̂j(t)] =

T∑

t=1

EV [x̂j(t)]

=

T∑

t=1

(

p̂j(t)
xj(t)

p̂j(t)
+ (1 − p̂j(t))0

)

=

T∑

t=1

xj(t)

What this means is that the total of the scaled rewards for action j after T hands ap-

proximates the total of the unscaled rewards that would be achieved if action j was taken

every hand. Note that the scaling of rewards prohibits the setting ψ = 0, since in this case

it would often be the case that some actions would have a probability near zero of being

selected. On the rare occasion that such an action is selected, that action would receive an

extremely large reward (due to the division by a miniscule probability), leading to numerical

instabilities in the algorithm.

One of the nice properties of the Exp3 algorithm, is that it has been shown to have

an average external regret that converges to zero (when the set of actions is all possible

actions). Recall that external regret is the difference between the rewards achieved by the

algorithm and the rewards achieved by the best pure strategy played against the opponent.

In the paper introducing Exp3 [2], the authors prove bounds that external regret for Exp3

at time T is O(
√
TK logK).

In an abbreviated variant of the original paper, published in 2000, there are minor
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modifications made to the algorithms [3]. Hedge only accepts rewards in the interval [0, 1]

and Exp3 must scale the rewards fed into Hedge by ψ/K to meet this restriction. These

do not seem to be necessary changes as all of the bounds were thoroughly proved in the

original publication, and the changes are equivalent to setting 1 + ρ1995 = (1 + ρ2000)
K/ψ.

Thus the algorithms are equivalent with different parameter settings. The changes appear

to have been made to simplify the proof of regret bounds for the Hedge algorithm. The

implementations presented here are based on the algorithms published in the original paper

[2].

In the multi-armed bandit problem, the player takes only a single action in each game.

This is nearly equivalent to choosing a single fixed strategy at the beginning of a larger

game that consists of multiple moves for each player. Once each player’s strategy is fixed,

the average outcome of the game is determined, as it is just the weighted sum of the

rewards available at each leaf of the game tree multiplied by the probability of reaching

that leaf. Unfortunately the modeller does not get to observe the average outcome, but

instead observes a single outcome based on chance (the deal) and from both players using

their strategies to make decisions over the course of one hand. For the purpose of discussing

these multiple-move games, Exp3 and Hedge’s action sets will instead be referred to as the

set of expert strategies or experts. The strategy that is selected in step 3.b (for hand t) will

be denoted et.

5.2.1 Experimental Setup

For the problem of P1 modelling P2 in Kuhn poker, P1 will have seven possible expert

strategies for each trial in the experiments shown here. Six of these experts will be the pos-

sible best-response strategies which partition the P2 strategy space, as shown in Figure 2.5

in Chapter 2; the seventh expert is the P1 equilibrium strategy with γ = 0.5, α = 0.167 and

β = 0.5. This means that for every P2 instance that P1 faces, the best-response strategy

is among P1’s possible counter-strategies, as well as a safe equilibrium strategy if P1 has

difficulty identifying a stronger pure counter-strategy. The test points listed in Section 4.2.1

are reused for these experiments.

The performance of the Exp3 algorithm depends heavily on the choice of the parameters

ψ and ρ. In the experiments listed here, results will be shown for ψ having each of the

values {0.25, 0.5, 0.75, 1} for the setting ρ = 1. The effect of changing ρ will be studied

in Section 5.7. Results shown are averaged over 30000 trials for each method discussed

against each test opponent. A single trial consists of a 900-hand match, where the player

being modelled uses a fixed stochastic strategy while the modeller’s data-collection strategy
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changes in accordance with ψ, ρ, and the observed rewards. Results are primarily shown

for the testpoints O2 and O6 as these points have highly contrasting results for the methods

studied.

The charts shown will be the payoff-rate, total winnings, and proportion above equilib-

rium plots introduced in the previous chapter. Payoff-rate plots show the expected payoff-

rate the modeller would recieve after hand t (referred to as the switching hand) if he switched

at this point to only playing the strategy which has the highest score. In the event that

` strategies are tied with the highest score, the counter-strategy used is to play the mixed

strategy with each of the tied strategies having the probability 1/` of being played. To-

tal winnings plots show what total winnings the modeller would expect to achieve if he

switched to the expert(s) with the highest score immediately after the switching hand in

a fixed-length match, and is computed as the sum of the winnings achieved in exploring

up until the switching hand plus the expected winnings over the remainder of the match.

Proportion above equilibrium plots show the proportion of trials that would expect to win

more than the equilibrium value in a 200-hand match if they switched to the highest scoring

expert(s) at the switching hand.

The payoff-rate plots shown in Figure 5.1 show that for any setting of ψ, the Exp3

algorithm has a very slow convergence to the best-response payoff-rate. The explicit mod-

elling method with equilibrium (γ = 0.75) data-collection has been plotted in all results

plots in this chapter for comparison. When comparing the results of the Exp3 algorithm

and the explicit modelling method, it is clear that the Exp3 algorithm is very far behind.

The initial payoff-rate of the Exp3 algorithms is the average payoff-rate of all seven experts

(each expert is tied with the highest score at hand 0); the initial payoff-rate of the explicit

modelling method is the counter-strategy to the initial estimates (η = 0.5, ξ = 0.5). Al-

though the initial payoff-rate for the explicit modelling method is much higher for the two

opponents shown here, this initial head start is not responsible for the superior performance

of the explicit modelling methods. Experiments are shown in Section 4.2.5 for which the

explicit modelling methods have a bad initial payoff-rate but still quickly converge to the

best-response rate.

The total winnings plots in Figure 5.2 show that using Exp3 would achieve close to the

equilibrium payoff rate against these opponents. The total winnings plots are much flatter

than the corresponding explicit modelling plots, because the Exp3 data-collection strategy

is partially exploitive when ψ < 1 (the amount of exploitation depends on the setting of

ρ and ψ). This suggests that a player using Exp3 would have a much larger interval over

which he could switch from exploration to exploitation, without losing a great deal in total
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Figure 5.1: Exp3 Method (ρ = 1.0) Payoff-Rate Plots
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Figure 5.2: Exp3 Method (ρ = 1.0) Total Winnings Plots
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winnings.

The proportion above equilibrium plots in Figure 5.3 further show that the Exp3 method

achieves close to equilibrium against these opponents (recall that playing equilibrium strate-

gies only achieves the equilibrium payoff-rate or higher in 50% of trials).

Similar results also hold for other test opponents and for the case of P2 modelling P1.

5.3 Improving the Algorithms

Although the Exp3 algorithm has been shown to have an average external regret that con-

verges to zero, the results shown for the algorithm suggest that this convergence is slow for

this application. Since this thesis is more concerned with short-term results, modifications

must be made to improve the Exp3 algorithm for the method of implicit modelling to be a

viable alternative to explicit modelling.

5.3.1 Sharing Rewards between Agreeing Strategies

One key observation that can be made about the game of Kuhn Poker is that for each

individual hand, the modeller is only dealt one of the three potential holdings that he could

have. Despite the fact that the expert strategies differ from one another over how to play

the entire game of Kuhn Poker, several experts could agree on what to do for the decisions

that were faced by the expert, et, chosen to play hand t. Since several expert strategies

may have acted the same as et, it is logical to reward the agreeing strategies as well as the

chosen expert. This idea results in a variation of Exp3 called SharingExp3 which has two

distinct differences from the normal Exp3 algorithm. The first difference is that multiple

strategies may have a nonzero reward in the simulated reward vector fed into Hedge. The

second difference is that the reward is no longer scaled by the probability of choosing et,

but is instead scaled by the probability of choosing any one of the agreeing experts. The

SharingExp3 algorithm is defined fully as Algorithm 3:
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Algorithm 3: SharingExp3

1. Parameters: reals ρ > 0 and ψ, 0 ≤ ψ ≤ 1

2. Initialization: Initialize Hedge(ρ)

3. Repeat for t = 1, 2, . . . until match ends

(a) Get distribution p(t) from Hedge

(b) Query each expert strategy for which pure strategy they recommend on
this round.

(c) Select pure strategy et to be the pure strategy recommended by expert
j with probability p̂j(t) = (1 − ψ)pj(t) + ψ

K

(d) Observe game sequence Dt and receive reward xet
(t) ∈ [0, 1]

(e) Let Et be the set of experts which recommended a pure strategy that
would have made the same decisions et did to generate the game se-
quence Dt. Compute qt(Dt), the probability of generating Dt given the
adversary’s decisions are fixed:

qt(Dt) =
∑

j∈Et

p̂j(t)

(f) Feed simulated reward vector x̂(t) into Hedge, where

x̂j(t) =

{
xet

(t)

qt(Dt)
if j ∈ Et

0 otherwise

}

The “purification” of experts in step 3.b of Algorithm 3 is done to make the sharing of

rewards simpler, as the scaling factor for the reward is easy to compute, and each of the

agreeing experts gets an equal share of the reward. However, it is also possible to avoid this

purification step by considering expert i to be in partial agreement with the pure strategy

et used if i would choose a pure strategy agreeing with et with probability ai(et). In this

case the probability of choosing an agreeing pure strategy is

qt(Dt) =
K∑

j

p̂j(t)aj(et),

and the reward given to expert i is

x̂i(t) = ai(et)
xet

(t)

qt(Dt)
.

The effectiveness of this method of giving partially agreeing experts a partial reward is left

for future studies. It is unlikely that this method would greatly affect the results in this

thesis since the set of experts contains only one mixed strategy (the equilibrium strategy

corresponding to γ = 0.5).
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The sharing among partially agreeing experts done by SharingExp3 seems to be in the

spirit of the Exp4 algorithm proposed by Auer et al [2]. The Exp4 algorithm considers the

case where there are N experts, where each expert suggests playing a probability distri-

bution over the K actions in the K-armed bandit problem. The experts’ distributions are

added together to obtain a single distribution over the actions and then a single action is

selected. All experts that suggest playing the selected action with nonzero probability are

given a partial reward. The full Exp4 algorithm is given below for comparison, although

it has not been implemented for the problem being studied here. Some of the indices and

parameters used have been changed here from the original publication to avoid confusion

with parameters used in this thesis.

Algorithm 4: Exp4

1. Parameters: Reals ρ > 0 and ψ ∈ [0, 1]

2. Initialization: Initialize Hedge(ρ) (with K replaced by N )

3. Repeat for t = 1, 2, . . . until match ends

(a) Get the distribution q(t) ∈ [0, 1]N from Hedge, where qn(t) is the
probability of choosing expert n.

(b) Get advice vectors ∆n(t) ∈ [0, 1]K representing expert n’s probability

distribution over the K actions. Let p(t) :=
∑N

n=1 qn(t)∆
n(t), so that

pj(t) is the overall probability of choosing action j.

(c) Select action it to be action j with probability p̂j(t) = (1−ψ)pj(t)+ ψ
K .

(d) Receive reward xit (t) ∈ [0, 1].

(e) Compute the simulated reward vector x̂(t) ∈ [0,K/ψ]K as

x̂j(t) =

{
xit

(t)

p̂it
(t) if j = it

0 otherwise.

}

(f) Feed the vector ŷ(t) ∈ [0,K/ψ]N into Hedge, where ŷn(t)
.
= ∆n(t) ·

x̂(t). This results in distributing the reward among the expert strategies
which choose it with nonzero probability.

There are a few key differences between SharingExp3 and Exp4. SharingExp3 is meant

for a game where only a small part of the game tree is traversed on each hand. Thus several

pure strategies for the entire game agree on the actual subgame played and these strategies

share the reward. Exp4 is meant for a matrix game where experts are mixed strategies; the

experts which contribute to the probability of choosing the actual row selected share the

reward (in proportion to the amount contributed by the expert).

The payoff plots shown in Figure 5.4 show that the sharing of rewards greatly speeds

up the convergence to the maximum payoff rate. The Exp3 algorithm with ρ = 1.0 and
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ψ = 0.5 has been plotted for comparison. For the opponent O2, the SharingExp3 algorithm

converges to being near the maximum payoff-rate of 0.1 $/hand after 900 hands, while the

Exp3 series with the highest payoff-rate results only achieves around 0.04 $/hand after the

same number of hands (note that the ψ = 0.5 Exp3 series plotted does not achieve this rate

but a different ψ setting in Figure 5.1 does).

The total winnings plots in Figure 5.5 show a minor improvement of the SharingExp3

algorithm over Exp3 against O6 and a huge improvement against O2. Similar to the Exp3

total winnings plots, the SharingExp3 plots are much flatter in comparison to the total

winnings plots for the explicit modelling methods in Chapter 4, meaning a player using

SharingExp3 has a large interval within which to change from exploration to exploitation

without sacrificing a great deal of total winnings.

Figure 5.6 shows that for both of the opponents shown, the SharingExp3 algorithm

outperforms the equilibrium payoff rate in over 60% of the trials at hand 75. These plots

suggest that using SharingExp3 and switching to exploitation at hand 75 is often favourable

to using an equilibrium strategy for the entire match, as an equilibrium playing strategy

achieves the equilibrium rate or greater only 50% of the time.

5.3.2 Inference

The improved performance of SharingExp3 over Exp3 inspires the search for further modi-

fications that produce large benefits. Since updating experts more often improved Sharing-

Exp3, it seems logical to continue this process. In SharingExp3, the experts that agree with

the chosen expert are the ones that are updated in every round. Sometimes it is possible to

infer what would have happened if an alternative action had been taken, which means it’s

possible to update experts outside the agreeing set on some rounds.

An example of inference occurs when P1 passes when holding the Jack in Round One

and observes a P2 bet in Round Two. Because P2 bet in Round Two, P1 can deduce that

P2 held the King and can then infer that if P1 had taken the alternative action of betting

in Round One he would have lost $2 (P2 would have called with the King). Likewise, if P1

bets in Round One and loses $2 when P2 calls with the King, P1 can infer that he would

have lost $1 by passing. An example where inference cannot be performed occurs when P1

passes in Round One with the Jack and P2 passes in Round Two with the Queen. In this

case P1 cannot infer what would have happened if he were to have bet with the Jack in

Round One.

Unfortunately, the inference method suffers from a problem of imbalanced updates, which

means some experts are updated for holdings in proportions which are greatly out of balance
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relative to the probability of the holdings. For the following example, assume P1 performs

inference when the J|K deal is identified, but no inference is done for any other deals.

When the pbp sequence occurs, P1 infers a loss of $2 for the action of betting instead of

passing in Round One. When the bb sequence occurs and P2 shows that he holds the

King in the showdown, P1 infers a loss of $1 for the action of passing in Round One.

Furthermore, suppose P1 bets or passes with the Jack in Round One with equal probability

(thus all rewards are scaled by the same probability, and the scaling can be ignored for now).

Figure 5.7 shows hypothetical observations that P1 has made after 20 hands of holding the

Jack; the numbers in the leaf nodes represent the number of times P1 has observed those

leaf nodes, while the payoffs for each node are below the nodes. There have been ten hands

where the J|K deal occurred, five of which P1 bet in Round One and lost $2 and five of

which P1 passed and lost $1. There have also been ten hands where the J|Q deal occurred,

five of which P1 bet (and saw one P2 call and four passes), and five which P1 passed and

went to a showdown. The observations of P2 folding four times with the Queen and calling

once suggest that P2’s η may be lower than 1/3 and the best counter-strategy to such a

parameter setting is to always bet with the Jack in Round One.

Chance

bet betpass

1/6

bet

1−η η

1−α

1

pass pass

α

pass

1/6

J|Q J|K

1−α

bet

α

pass
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1 1

1

5

55 4 1

(−$1)

(−$2)(−$1) (+$1) (−$2)

Figure 5.7: Observations made by P1 without inference

Without inference, betting has five hands of J|K data (-$10 total) and five hands of J|Q
data (+$1 for each pass and -$2 for each call, +$2 total), giving a cumulative reward of -$8.
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Passing has five hands of J|K data (-$5 total) and five hands of J|Q data (-$5 total), giving

a cumulative reward of -$10. Without inference, betting with the Jack in Round One is

correctly identified as the best counter-strategy.

Chance

bet betpass

1/6

bet

1−η η

1−α

1

pass pass

α

pass

1/6

J|Q J|K

1−α

bet

α

pass

bet

1 1

1

10

105 4 1

(−$1)

(−$2)(−$1) (+$1) (−$2)

Figure 5.8: Observations made by P1 (actual and inferred observations)

Figure 5.8 shows the observation counts for P1 when he uses inference. With inference,

betting has ten hands of J|K data (-$20 total) and five hands of J|Q data (+$2 total), which

gives a cumulative reward of (-$20 + $2) = -$18. With inference, passing has ten hands

of J|K data (-$10 total) and five hands of J|Q data (-$5 total), which gives a cumulative

reward of -$15. Thus with inference, passing is seen as the best option. The reason for this

is that the experts have an imbalance in data; twice as much data is available for the J|K
case than the J|Q case, suggesting to the experts that the J|K deal is twice as likely as the

J|Q deal.

One idea to address this imbalance problem is to divide any rewards (observed and

inferred) given to an expert by the probability of observing the situation directly plus the

probability of inferring the situation. Unfortunately, inference by strategy j about strategy

i often depends on the opponent taking a particular sequence of actions. This means the

probability of inference depends on the probability of the opponent’s actions, which is usually

unknown (unless all of the opponent’s alternative actions are dominated). This solution

fixes the imbalance example introduced above, as each J|K datapoint in Figure 5.8 would
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be divided by 100% (inferences are made about the action not taken every time this deal

occurs), while each J|Q datapoint would be divided by 50% (inferences were not made in

the example when this deal occurred).

However, this solution also excludes other situations where inference would intuitively

seem possible. For example, when the K|Q deal and the bb sequence occurs, it would seem

possible to make use of the knowledge that if P1 had passed with the King in Round One,

P2 would also have passed (it would be a dominated action for P2 to bet). However, this

inference depends on P2 calling with the Queen after P1’s initial bet (which is what actually

occurred), and the probability of this event is unknown.

5.3.3 Average Rewards versus Cumulative Scaled Rewards

The motivation for scaling the rewards in both Exp3 and SharingExp3 is to compensate

for the fact that certain experts may be chosen more often than others and thus have

their cumulative winnings increased more often. The goal of scaling the rewards is for the

cumulative winnings of expert j after hand t to be approximately the average reward (if j

was rewarded on every round) for expert j multiplied by t. However, this depends on experts

being chosen and updated as often as the probabilities suggest that they should be, which

may not be the case in the short term. For example, suppose expert j1 has a probability

of being updated 20% of the time (typically this probability changes from one game to the

next, but assume it is constant for this example), but over a 100-game period expert j1 is

only updated 15 times, then j1’s cumulative score will not be as high as it would be if it were

updated with unscaled rewards 100 times. Conversely, if expert j2 also has a probability of

being updated 20% of the time and is updated 25 times in a 100-game period, then j2 could

have a higher cumulative score than j1 while having a lower reward on average.

A modification to Exp3 to address this problem is to simply keep track of the number of

times each expert has been updated and compute each expert’s observed average unscaled

reward. This algorithm is AverageExp3, which generates the payoff-rate plots in Figure 5.9.

The results in these payoff rate plots are clearly worse than the SharingExp3 algorithm,

except when ψ = 1 and experts are chosen from uniformly in each round. The reason for

these poor results is that the AverageExp3 algorithm can also suffer from an imbalance

problem.

The SharingExp3 method will also be applied for the following example, to show how

it avoids the imbalance problem suffered by AverageExp3. In order to apply SharingExp3,

the rewards have been converted to the interval [0, 1] using the conversion formula x[0,1] =

(x[−2,2] + 2)/4.

102



-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0  100  200  300  400  500  600  700  800  900

E
xp

ec
te

d 
P

ay
of

f R
at

e

Switching Hand

Maximum
Psi = 1

Psi = 0.75
Psi = 0.5

Psi = 0.25
Explicit Modeller

SharingExp3, Psi = 0.5

(a) O2 = (0.75, 0.8)

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  100  200  300  400  500  600  700  800  900

E
xp

ec
te

d 
P

ay
of

f R
at

e

Switching Hand

Maximum
Psi = 1

Psi = 0.75
Psi = 0.5

Psi = 0.25
Explicit Modeller

SharingExp3, Psi = 0.5

(b) O6 = (0.25, 0.67)

Figure 5.9: AverageExp3 Method (ρ = 1.0) Payoff-Rate Plots
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Figure 5.10: Observations made by P1

Suppose there are only two experts, i1 and i2, and they both advise the same action for

all situations except when holding the Jack in Round One, in which case i1 advises betting

and i2 advises passing. Figure 5.10 summarizes the observations made by P1. For the

situations where the experts agree (ie. when the Queen or King is held), the two experts

are updated 90 times for a total reward of 65. For the situation where they disagree, i1 is

updated 35 times for a total reward of 11.25, and i2 is updated ten times for a total reward

of 2.5. Note that i1 has a higher average reward than i2 when considering only actions taken

with the Jack (i1 has an average reward of 0.321 while i2 has an average reward of 0.25),

which means that i1 should be the recommended expert.

The average reward for i1 is (65 + 11.25))/(125 updates) = 0.61 units/update, while

the average reward for i2 is (65 + 2.5))/(100 updates) = 0.675 units/update. AverageExp3

would recommend i2 as the best counter-strategy. The interesting thing is that i1 has a

higher average reward than i2 when only the actions with the Jack are taken into consid-

eration, and they both have the same average reward for the remaining situations, but i2

has the higher overall average2. The reason for this is that 90% of i2’s average comes from

holding strong cards (the King and the Queen), while only 72% of i1’s average comes from

holding the strong cards. Thus AverageExp3 also suffers from a problem of imbalancing, as

a bad expert can appear stronger than a good expert because the good expert was updated

more often when the weak card was held. Typically this imbalance does not occur simply

due to bad luck, which would be the case if both the good and bad experts were equally

likely to be updated with the weak card, but the good strategy just happened to catch all

the bad hands. The imbalance typically occurs because the good expert has a higher proba-

2This is an instance of Simpson’s paradox: “It is not necessarily true that averaging the averages of
different populations gives the average of the combined population.” [42]
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bility of being updated when the weak card is dealt. This occurs because the set of experts

is partitioned into different agreeing sets for each card, meaning an expert can have different

probabilities of being updated for each card (the probability that expert i is updated given

card C is the sum of the probabilities of the experts in i’s agreeing set for C).

This imbalance problem does not occur in SharingExp3 because of the reward scaling.

When i2 has a lower probability of being updated when the Jack is dealt, his reward when

updated in this situation is scaled higher to compensate for the lower frequency of updates.

Suppose for the hypothetical data in Figure 5.10 that i1 has an 80% chance of being updated

and i2 has a 20% chance of being updated when the Jack is held. Both have a 100% chance

of being updated when the Queen or King is held. Scaling the rewards by the probability of

the observations gives the cumulative reward for i1 of ((65/1.0)+(11.25/0.8)) = 79.0625; the

cumulative scaled reward for i2 is ((65/1.0) + 2.5/0.2)) = 77.5. SharingExp3 recommends

i1 as the best expert, although the margin of victory is pretty narrow due to the fact that

i2 has been updated slightly more often than the probabilities dictate.

In Kuhn Poker it is known that the probability of receiving each card is 1/3; this means

that about 1/3 of each expert’s score should come from holding each card. The poor results

of the AverageExp3 algorithm are due to the fact that some experts can be much luckier

than others, in terms of being updated more often with strong cards than with weak cards.

This luck is then reflected in higher average rewards received by the lucky strategies than

unlucky strategies. One way of reducing this luck factor is to compute separate averages for

each expert for the cases of holding each card, and combine these averages to form the overall

average. This method is used in the ComponentAverageHedge and ComponentAverageExp3

algorithms, Algorithms 5 and 6.
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Algorithm 5: ComponentAverageHedge

1. Parameter: a real number ρ > 0

2. Initialization: Set Wi,J(0) = Wi,Q(0) = Wi,K(0) = 0 and Ci,J(0) = Ci,Q(0) =

Ci,K(0) = 0 for i = 1, . . . ,K
3. Repeat for t = 1, 2, . . . until match ends

(a) Compute average winnings, Ai,H(t− 1) for i = 1, . . . ,K and H = J, Q,
K:

Ai,H(t− 1) =







W
i,H(t−1)

C
i,H(t−1)) if Ci,H(t− 1) > 0

0 otherwise







(b) Compute overall average, Âi(t− 1) for i = 1, . . . ,K:

Âi(t− 1) =
Ai,J(t− 1) +Ai,Q(t− 1) +Ai,K(t− 1)

3

(c) Choose action it according to the distribution p(t), where

pi(t) =
(1 + ρ)t∗Ai(t−1)

Zt

(d) Receive hand H, reward vector ~x(t) and update vector ~u(t)

(e) Set Wi,H(t) = Wi,H(t− 1) + xi(t) and Ci,H(t) = Ci,H(t− 1) + ui(t) for
i = 1, . . . ,K

Algorithm 6: ComponentAverageExp3

1. Parameters: reals ρ > 0 and ψ, 0 ≤ ψ ≤ 1

2. Initialization: Initialize ComponentAverageHedge(ρ)

3. Repeat for t = 1, 2, . . . until match ends

(a) Get distribution p(t) from ComponentAverageHedge

(b) Select strategy et to be expert strategy j with probability p̂j(t) = (1−
ψ)pj(t) + ψ

K

(c) Observe game sequence St and receive reward xet
(t) ∈ [0, 1]

(d) Let Et be the set of experts which would have taken the actions required
to generate the game sequence St.

(e) Feed hand H along with simulated reward vector x̂(t) and update vector
û(t) into ComponentAverageHedge, where

x̂j(t) =

{
xet

(t) if j ∈ Et
0 otherwise

}

ûj(t) =

{
1 if j ∈ Et
0 otherwise

}
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While these algorithms have been designed specifically for Kuhn Poker, they can easily

be adapted for larger games and games where the holdings are not equally likely. In such

games, separate averages can be kept for each possible holding, and these averages can then

be combined according to the probability of each holding. For example, if holding H1 occurs

with 50% likelihood, H2 occurs with 30% likelihood, and H3 occurs with 20% likelihood,

then the overall average score for expert i would be Âi = 0.5 ∗Ai,1 + 0.3 ∗Ai,2 + 0.2 ∗Ai,3.
The payoff-rate plots in Figure 5.11 show that the ComponentAverageExp3 method con-

verges to best-response more quickly than any of the previous Exp3 algorithms. However,

the explicit modelling method plotted still outperforms the ComponentAverageExp3 algo-

rithm, as it converges even more quickly to the best-response strategy. Reasons why explicit

modelling methods perform better in Kuhn Poker are discussed in Section 5.8.

The total winnings plots in Figure 5.12 show that the ComponentAverageExp3 algorithm

is a significant improvement over the SharingExp3 algorithm. It is now possible to have

positive total winnings against both opponents, which was previously only achieved by

explicit modelling methods. The ComponentAverageExp3 series are again much flatter

than the explicit modelling series, allowing for a larger interval to switch in without losing

much in total winnings.

The proportion above equilibrium plots in Figure 5.13 show that nearly 80% of the trials

have expected total winnings greater than equilibrium at hand 50 for the ComponentAver-

ageExp3 method. For settings of ψ <= 0.5, more than 50% of the trials finish with total

winnings above equilibrium, which is better than the explicit modelling methods.

5.4 Decomposition into Subgames

In the previous section, the ComponentAverageExp3 method was derived to ensure that 1/3

of each experts’ score came from holding each card in Kuhn Poker, as in theory each card

will be held 1/3 of the time. Another way to approach this problem is to treat each holding

as a separate game altogether, use the AverageExp3 method in each of these subgames, and

combine the perceived best strategies in the subgames to form a counter-strategy for the

complete game (henceforth referred to as the supergame). Kuhn Poker decomposes into three

subgames (the Jack subgame, the Queen subgame, and the King subgame), each of which

has a single parameter in the case where P1 is the modeller and dominated strategies are

removed. Each Kuhn P1 subgame then has two pure expert strategies, which results in up

to 23 = 8 pure counter-strategies generated for the supergame. The imbalance problem for

AverageExp3 which was discussed earlier is that experts may be more likely to be updated

with certain cards than they are with others. Thus the experts scores often do not have
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balanced contributions from each of the possible holdings. AverageExp3 can be applied

here because each subgame is defined by the player having a particular card, which makes

it impossible for the holdings to be out of balance within an expert’s score as there is only

one holding.

Algorithm 7: DecompositionExp3

1. Parameters: reals ρ > 0 and ψ, 0 ≤ ψ ≤ 1

2. Initialization: (i) Initialize AverageHedge(ρ) for J subgame (2 experts)

(ii) Initialize AverageHedge(ρ) for Q subgame (2 experts)

(iii) Initialize AverageHedge(ρ) for K subgame (2 experts)

3. Repeat for t = 1, 2, . . . until match ends

(a) Receive holding H.

(b) Get distribution p(t) from AverageHedge corresponding to H subgame

(c) Select strategy it to be expert strategy j with probability p̂j(t) = (1 −
ψ)pj(t) + ψ

2

(d) Observe game sequence St and receive reward xi(t) ∈ [0, 1]

(e) Let Et be the set of experts which would have taken the actions required
to generate the game sequence St.

(f) Feed simulated reward vector x̂(t) and update vector û(t) into Average-
Hedge corresponding to the holding H, where

x̂j(t) =

{
xi(t) if j ∈ Et
0 otherwise

}

ûj(t) =

{
1 if j ∈ Et
0 otherwise

}

The DecompositionExp3 algorithm is very similar to the ComponentAverageExp3 al-

gorithm. The decomposition method determines the best expert for each subgame cor-

responding to the possible holdings and combines these experts to form a strategy for the

supergame, while the component average method computes scores for each supergame strat-

egy which weight the subgame scores in proportion to the probability of each subgame. The

two methods are identical if the set of experts for the supergame in the ComponentAverage-

Exp3 algorithm consists of all the pure non-dominated strategies, but this is not the case

in the studies shown here.

In the experiments in this chapter, the experts for the Exp3 algorithms are the six pure

strategies which are possible best-response strategies to P2’s possible strategies, as well as

the equilibrium strategy corresponding to γ = 0.5. This means the results for the two al-

gorithms, ComponentAverageExp3 and DecompositionExp3, can be slightly different. The
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DecompositionExp3 algorithm may recommend one of the strategies (α = 0, β = 0, γ = 0) or

(1, 1, 1) as the best counter-strategy which could not be identified by the ComponentAver-

ageExp3 algorithm. Similarly, the ComponentAverageExp3 algorithm could recommend

(0.17, 0.5, 0.5) as the best counter-strategy, but this strategy could not be identified by the

DecompositionExp3 algorithm.

For extreme settings of the ρ and ψ parameters, the data-collection strategies used by

the two algorithms may also be different. If ρ is set very high and ψ is very low for the

DecompositionExp3 algorithm, then the pure strategies initially chosen for each subgame

will likely be chosen over and over again, as the alternatives are stuck at the cumulative

score of 0.

For these settings in the ComponentAverageExp3 algorithm, a similar effect occurs, as

well as the fact that the initial choice in one subgame affects the choice of strategies in the

subsequent subgames. For example, if P1 was initially dealt the Jack and took the action

corresponding to α = 1, then the experts (1,0,0), (1,0,1), and (1,1,0) would all receive

the reward, which is assumed to be greater than zero for this discussion (also assume that

the strategy (0.17, 0.5, 0.5) recommended the action corresponding to α = 0 and thus

does not receive the reward). Given the extreme parameter settings, these experts would

now be the only experts considered for hands following the first one, and if P1 was dealt

the Queen in the second hand, the setting β = 0 would be twice as likely to be chosen

as β = 1. However, with reasonable settings of the parameters ρ and ψ, the results of

the ComponentAverageExp3 and DecompositionExp3 algorithms in Kuhn Poker are nearly

identical, as demonstrated by the payoff-rate plots shown in Figure 5.14. In these plots,

the DecompositionExp3 (ρ = 1, ψ = 0.5) method has a slightly higher payoff-rate than the

ComponentAverageExp3 (ρ = 1, ψ = 0.5) method.

5.5 Initial Weights for Expert Strategies

One of the most notable properties of the payoff-rate plots shown in this chapter is that the

initial payoff-rate is often very different for the implicit modelling techniques than it is for

the explicit modellers. For the implicit modellers, each of the expert strategies is initially

tied with a score of 0, which means the counter-strategy initially recommended is to play

each expert one-seventh of the time. Meanwhile, the explicit modellers begin with the initial

estimates (η = 0.5, ξ = 0.5) which leads them to recommend the strategy of playing S2 half

the time and S3 half the time.

One of the concerns arising from these payoff-rate plots is that the explicit modelling

methods might be outperforming the implicit modelling methods because of a better starting
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point. This study adjusts the initial payoff-rate of the implicit modellers to match that of

the explicit modellers; this adjustment is done by adding a small amount of weight to the

scores of the expert strategies S2 and S3. This results in both the implicit and explicit

modellers recommending the same initial counter-strategy.

Explicitly, the score for expert i after hand t is computed as

Ŵi(t) =

{
t ∗ Âi(t) + 1 if i = 2 or i = 3

t ∗ Âi(t) otherwise

where Âi(t) is computed as in Algorithm 5. The modeller uses the ComponentAverageExp3

algorithm with ρ = 1.0 and ψ = 0.5.

Figure 5.15 shows that having experts S2 and S3 weighted provides a better initial

payoff-rate for testpoints O1 and O2. However, the implicit modeller with no weights quickly

catches up in the payoff-rate plots, catching up within 50 hands for O1, while taking about

300 hands to catch up for O2. Neither implicit modeller is able to match the convergence

speed of the explicit modeller plotted for comparison, who uses the γ = 0.75 equilibrium

data-collection strategy.

The total winnings plots in Figure 5.16 show that the modeller with weighted experts

has a higher initial total expected winnings for these testpoints, but the modeller with no

initial weights quickly closes the gap. This gap may not close completely (as is the case

for O2) for two reasons. The first reason is that the modeller with no weights added to

the experts may not have a model with as high a payoff-rate as the modeller with weighted

experts before the match is over, which means as long as there are hands to be played, the

modeller with weighted experts has a higher expected winnings for the remainder of the

match. O2 is an opponent for which the model with the weighted experts achieves a higher

payoff-rate until about hand 300, so the modeller with no weights will have lower expected

total winnings for an entire 200-hand match. The second reason is that the data-collection

strategy is partially exploitive, which means the implicit modeller with the better model

will win more during the data-collection phase.

In contrast, Figure 5.17 shows that having experts S2 and S3 weighted provides a lower

initial payoff-rate for testpoint O4, and in this case, the weighted modeller never closes

the gap in the total winnings plot. This shows that weighting experts S2 and S3 does not

improve the results for all testpoints; any weighting scheme is likely to improve results for

some testpoints and be detrimental to the results of others.
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5.6 The Effect of Match Length on Expected Winnings

All of the previous total winnings plots that have been shown have match lengths of 200

hands. The purpose of this study is to see how changing the match length affects the results

of the opponent modelling methods. It is also interesting to see how the switching hand

that maximizes the expected total winnings changes for different match lengths.

Figure 5.18 shows two plots, where each plot shows total winnings for a single modelling

method for different match lengths. These results are averaged against random opponents

that have exploitability 0.0556 $/hand. The explicit modeller, using the equilibrium data-

collection method, is not able to achieve positive winnings when matches are 100 hands or

less, as there is not enough time to learn a good model and have time to use it. The explicit

modeller is able to achieve positive winnings for longer matches. The implicit modeller,

using ComponentAverageExp3 with ρ = 1.0 and ψ = 0.5, is not able to expect positive

winnings against this set of opponents when the match lasts 400 hands or less.

Figure 5.19 shows the switching hand that achieves the highest expected total winnings

for each match length. This maximal switching hand seems to grow linearly with the match

length for both the explicit and implicit methods. The line for the implicit modeller suggests

that the modeller should switch from exploration to exploitation after about one-quarter of

the match is complete. The explicit modeller should switch after collecting data for about

one-eighth of the match.

If the precise length of the match is not known in advance, the total winnings plots

shown in Figure 5.18 suggest that for any match longer than 50 hands, the modeller can

achieve expected total winnings close to the maximal amount if he switches near hand 25

for the explicit modeller shown or near hand 50 for the implicit modeller, for any of the

match lengths shown in the plot.

5.7 The Effect of Varying ρ

The results for each of the different Exp3 methods shown thus far have been for ρ = 1.0 and

varying values of ψ. This allowed for the impact of the ψ parameter to be seen, but not the

impact of different values of ρ. This study rectifies this situation by varying the value of ρ

for fixed values of ψ using the ComponentAverageExp3 algorithm.

Figures 5.20 and 5.21 show the payoff-rate and total winnings plots for the two opponents

O1 and O2, for various values of ρ with ψ = 0.5. For these two opponents and this setting

of ψ, changing ρ has no effect on the payoff-rate plots. It does have an effect on the total

winnings plots as larger values of ρ (such as 3 or 9) result in higher total winnings, as the
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Figure 5.18: Total Winnings Plots for Different Match Lengths
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data-collection strategy is more exploitive. Lower values of ρ (such as 0.111) result in a

data-collection strategy that is close to the uniform exploration strategy, which is why the

corresponding total winnings series are very close (the ρ = 0.111 series has slightly higher

winnings than the uniform exploration strategy at the end of 200 hands).

Lower values of ψ result in less uniform exploration, and a stronger impact of the ρ

parameter. Figures 5.22 and 5.23 show the payoff-rate and total winnings plots for various

ρ values with ψ = 0.25. Here there is a little bit of separation between the series in the

payoff-rate plot for O2, as lower values of ρ generate better opponent models; however the

total winnings plot shows that these better models come at a higher cost, as the more

exploitive values of ρ achieve higher total winnings.

Due to numerical issues arising, the setting ψ = 0 cannot be used for the Exp3 algo-

rithm, as rewards are divided by the probability of choosing the selected expert et, and

this probability is sometimes very near zero. In addition, with large settings of ρ, the first

expert that receives a nonzero reward is very likely to be repeatedly selected, as this expert

is the only expert with a nontrivial probability of being selected. The ComponentAverage-

Exp3 algorithm does not have the numerical issues, as rewards are not scaled. Furthermore,

the sharing of rewards between experts ensures that multiple experts are rewarded on each

hand, and no single expert jumps out to an insurmountable lead.

Figures 5.24 and 5.25 show the payoff-rate and total winnings plots for various ρ values
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with ψ = 0. Since no uniform exploration is performed, the methods with larger settings of

ρ do not always quickly build good models, as the first experts to show promise are used

repeatedly during the data-collection phase; if the actual best expert, eb, does not initially

show promise, then the algorithm is unlikely to update eb very often and it takes longer for eb

to be identified as the best expert. Thus for large values of ρ (ie. ρ ≥ 3), the algorithm may

not pay as much during the exploration phase when ψ = 0 as it does when ψ ≥ 0.25, but this

is offset by the decrease in modelling effectiveness which results in decreased winnings over

the exploitation phase. With small settings of ρ (ie. ρ ≤ 1/3), the methods still perform a

great deal of exploration among all experts even with ψ = 0, leading to better models being

developed than for large settings of ρ. However, the frequent use of bad experts during

data-collection results in lower winnings during the exploration phase, offsetting the higher

winnings of the exploitation phase. The best total winnings results for O1 (and for many

of the other testpoints that are not shown here) occur for the setting ρ = 1, when a good

model is usually found, as the value of ρ is not so large that data-collection is solely focused

on the initially promising experts, and the cost of exploration is not too high, as promising

experts are played more often than bad experts during data-collection.

Overall, the parameter settings which achieve the highest expected total winnings ex-

perimentally are ρ = 1 and ψ = 0. However, even with these settings, the ComponentAver-

ageExp3 method does not achieve as high a total winnings as the explicit modeller in the

plots shown in Figure 5.26.

5.8 Conclusions

The first conclusion that seems clear from the results presented in this chapter is that in

the setting of Kuhn Poker, explicit modelling is a much stronger modelling method than

implicit modelling. The explicit modelling methods consistently generate stronger models

and have higher expected total winnings. Although it appeared that this might be happening

because the initial estimates held by the explicit modelling methods lead to better initial

counter-strategies and the Exp3 algorithms could not catch up, this theory is disproved in

Section 5.5.

In Kuhn Poker, explicit modelling should achieve better results than implicit modelling

for a number of reasons. First, the game is small enough that the parameter model for P2

only has two parameters for P1 to estimate. Second, many games end with a showdown,

and even when hands do not end in a showdown there are cases for which the card unseen

by the modeller can be conclusively inferred. Explicit modelling techniques depend on this

data, while implicit modellers are oblivious to whether or not showdowns occur. Third and
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probably most importantly is that the explicit modelling method does a huge amount of

information sharing, as it combines data from different instances of the opponent’s parame-

ters in the game tree, such as the data discovered about η when P1 holds the Jack and the

data discovered about η from when he holds the King. Emulating this information shar-

ing in the implicit modelling methods described in this chapter would undoubtedly raise

data-balancing problems.

However, implicit modelling research is not a lost cause, as there are some valuable

properties held by the methods. Due to the fact that data-collection is directed towards

promising strategies, the winning rate of the implicit modelling method during the explo-

ration phase is often higher than that of explicit modelling methods. This also results in

flatter total winnings curves for the implicit modelling methods, which means they have a

larger interval within to switch without losing a great deal of winnings in comparison to

the best switching point. Exploratory data-collection strategies for explicit modellers can

sometimes be highly exploited by the opponent, and be unable to recoup the losses even

after an effective model has been generated. In this case the implicit modelling methods are

preferrable as the data-collection strategy is adjusted to avoid losing as much during the

exploration phase.

The implicit modelling methods are achieving better results than the explicit modelling

method using the γ = 0 equilibrium data-collection strategy. In larger games where only

a single equilibrium strategy is known, or if multiple equilibrium strategies are known but

their exploration values are unknown, implicit modelling could be a viable alternative.

One major advantage of implicit modelling is that all that is required is a set of strategies

to use; no information is required about the opponent’s strategy, which may be incredibly

complex for large games. This suggests that it may be easier to implement the implicit

modelling techniques for larger games, as it does not need to keep track of a huge model.

It also seems possible that some hybrid of the two modelling techniques could be created;

the implicit modelling method could be used to collect data, while the data collected is used

to create an explicit model of the opponent. The set of counter-strategies could then be

assigned scores based on the explicit model. This hybrid technique would combine the best

of both worlds, taking advantage of the powerful data-utilization of the explicit modeller

while risking less winnings during the exploration phase due to the exploitive nature of the

implicit modeller’s data-collection strategy.
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Chapter 6

Related Work

Poker has been of interest to game theorists ever since the fundamental work of von Neumann

and Morgenstern [40], which included an analysis of a small poker game. As the field of

game theory developed, many game theorists developed their own small poker variants

(including Kuhn Poker) in order to demonstrate game theory dynamics [21, 26, 28]. More

recently, attempts have been made to apply game theory principles to larger, more popular

poker variants, including Five-Card-Draw [1, 43], Stud Poker [43], and Texas Hold’em [8].

With the recent breakthrough of practical methods for solving games [23] and increasing

computational power, more poker games are becoming solvable by game theory techniques.

Other early studies of poker include the simulation of human cognitive processes [17], as

well as the application of machine learning techniques [35, 41].

Poker has recently experienced an explosion in popularity, and this has been mirrored

in academia as well. The University of Alberta Computer Poker Research Group (CPRG)

has been one of the leaders in poker research for the game of Limit Texas Hold’em, taking

several different approaches to the challenge of creating a strong player. Recent approaches

have resulted in the programs Poki, PsOpti, and Vexbot.

Poki [14, 15] is a program which does opponent modelling in Texas Hold’em, for play in

a ring-game with up to ten players. Poki is a rule-based system which performs simulations

of the rest of the game to decide what action is best. Explicit opponent models are used

in the simulations to predict the holdings of the opponents as well as their future decisions.

This program is slow to adapt, indicating that either the model is not being effectively

developed, or it is not being effectively used. One problem is that the ten-player ring-game

has an exponentially larger game tree than the two-player game, resulting in a need for an

exponentially larger model.

PsOpti [8] was created using game-theory to solve a simplified version of two-player Texas

Hold’em. While the program cannot be exploited in the simplified game, the mapping of
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the solution of the simplified game onto a strategy for the full game leaves “holes” in the

strategy which can be exploited by strong players. Additionally, since the program plays a

fixed strategy, opponents that discover weaknesses in the program’s strategy can continually

exploit these weaknesses.

Vexbot [7] is also designed for two-player Texas Hold’em, and uses explicit modelling in

its approach. Vexbot searches a game tree to compute the expected value of each action, and

uses opponent modelling to improve its evaluation function, using observations from past

hands to estimate the probability of reaching each leaf in the game tree, as well as estimating

the opponent’s hand strength at each leaf. Vexbot is quickly able to take advantage (within

200-400 hands) of most weak rule-based computer programs, but takes longer (typically

several thousand hands) to successfully model PsOpti, which is a much more complex than

other rule-based systems that have been developed. Vexbot has had limited success against

strong humans, who effectively change their style more quickly than Vexbot can adapt.

The CPRG is also currently investigating the use of Bayesian probabilistic models [36],

to maintain a distribution over different explicit opponent models. After every hand, a pos-

terior probability distribution over opponent models, Pr(Opponent Model | Observations),

is updated; this requires that a prior distribution, Pr(Opponent Model), is initially speci-

fied. The fully Bayesian approach to using this distribution to exploit the opponent would

involve computing a Bayesian Best Response (BBR), maximizing the expected value over

all possible hands and opponent strategies, given the observations. However, computing

the BBR can be quite expensive, particularly in large games. One alternative suggested is

to find the maximum a posteriori (MAP) strategy of the opponent (the opponent strategy

that is the most likely, given the observations) and compute a best-response strategy to this

MAP strategy. Another alternative is to sample opponent strategies based on the posterior

distribution, and play a best-response strategy to the strategy that is chosen on each hand

(Thompson Response). The MAP response method is the method most similar to the ex-

plicit modelling performed in this thesis, as here the modeller computes a single strategy

based on the observations and assumes the opponent is playing this strategy. The effect of

using MAP estimates in Kuhn Poker is briefly explored in Section 6.1.

Other interesting approaches to creating strong poker programs include the use of evolu-

tionary algorithms. One such approach [5, 22] evolves a parametrized strategy while playing

at a table with opponents that use fixed strategies. This is an implicit modelling approach,

as a counter-strategy is developed without explicitly modelling the opponents.

Another evolutionary approach [29, 30], uses Pareto coevolution, an enhancement of

standard genetic algorithms which maintains a population of strategies, by playing the
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strategies against each other, removing weak strategies and adding new strategies that

are combinations of strong strategies from the population, and repeating this process for

thousands of generations. Another approach uses Bayesian networks in the implementation

of an adaptive Stud Poker player [24].

One thing that is lacking in all of these poker studies is a good metric to measure program

strength. While results against test suites of simple opponents can be insightful, stronger

opposition is required for an adequate measure of strength. Unfortunately, matches against

strong humans only provide anecdotal information, as it is very unlikely that a statistically

significant number of hands is played. Hopefully as stronger programs are developed by

independent sources, a set of reference players can be created which provide a challenging

and informative test for new programs.

Opponent modelling has been used with varying degrees of success in many applications

besides poker. The small domains of the iterated Prisoner’s Dilemma [4] and Roshambo

[6] have provided some very interesting and contrasting results. In the iterated Prisoner’s

Dilemma, a strategy that wins nearly every tournament is the very simple “tit-for-tat”

strategy which does no complex opponent modelling, but simply repeats the opponent’s last

move. In contrast, Roshambo programs which win require the use of opponent modelling

to take advantage of exploitable opponents, while also ensuring that the program itself is

difficult to model.

A recent study of universal learning in repeated matrix games [32] used similar methods

(explicit and implicit modellers) to those studied in this thesis. Extensions to handle sys-

tematic opponents by way of extending information sets to include knowledge of the actions

taken in the previous round(s) were also introduced. However, these extensions also increase

the complexity of the model, slowing down the learning in many cases.

One interesting opponent modelling study uses past games to train a decision tree to

identify particular opponents or categories of opponents by their playing style [33]. Once an

opponent is identified (or assigned a style category), his moves can be simulated in a search

of the game tree. A nice consequence of this research is that the decision trees can be read

and interpreted in a meaningful way by humans.

An algorithm, M∗, for using an explicit opponent model when searching a game tree

has resulted in improved performance of a checkers program [10, 11]. When a complete

opponent model is too complex to create from only a few observations, another approach is

to develop a classifier which can categorize certain moves as being weak moves; recognizing

areas where an opponent is weak can lead to quick exploitation as the modeller repeatedly

directs his opponent into these situations [27]. This method of learning a weakness model of
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the opponent has been successfully applied to simple programs for games such as Connect

Four and checkers1.

Improved artificial intelligence has recently become a high priority in commercial games,

leading to efforts to create adaptive players [38, 37]. Efficiency is a key issue, as these

adaptive methods must work in real-time. An interesting property of this research is that

while the motivation for doing opponent modelling is usually to be able to exploit the

opponent as much as possible, this is not necessarily true for commercial games. The goal

of commercial games is to entertain the player, not provide an unbeatable opponent that

frustrates the player, causing the player to quit playing the game. Adaptive play is also

introduced via dynamic scripting, in which characters are defined by sets of rules, and the

probability that rules are present in future characters depends on the success of previously

created characters. This seems similar to the implicit modelling methods studied here,

where counter-strategies are sampled and evaluated, and counter-strategies which produce

good results are used more in the future.

Since the publication of Exp3 and Exp4 [2], research has been done on improving regret

algorithms and forming more complex notions of regret. The notion of response regret has

been introduced [44], which examines the short-term consequences of actions rather than

just the immediate consequences. In nonzero-sum games such as the iterated Prisoner’s

Dilemma algorithms minimizing response regret investigate how other agents respond to

being treated nicely, leading to cooperative players rather than defecting players which are

created by typical regret algorithms.

One concept that has not been greatly explored in this thesis is the value of informa-

tion [13, 16]. Each action that the modeller can take has an associated information value

(corresponding to the improvement made to the model based on the information gained)

and an associated cost. Using an information theory framework, the problem of optimal

data-collection can be formulated as a planning problem, but such problems are infeasible

to solve exactly. Regardless, the idea of the value of information can be used to create more

complex data-collection strategies than those used in the thesis, if focus is directed towards

actions with a higher value of information; this in turn focuses data-collection away from

parameters which have been sufficiently estimated while more information is required about

other parameters.

1The checkers programs referred to here are not nearly as strong as the strongest computer player,
Chinook [34], which does no opponent modelling but instead uses large endgame databases and deep game-
tree searches to defeat all challengers.
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6.1 The MAP Approach to Explicit Modelling in Kuhn

Poker

A recent Bayesian study of poker [36] has suggested the possibility of computing an oppo-

nent’s maximum a posteriori (MAP) strategy and playing the best-response to this strategy.

While this MAP strategy can be difficult to compute in large games, it can be computed

for the small game of Kuhn Poker2. The MAP parameter estimates derived differ slightly

from the estimates discussed in Chapter 3.

Consider the portion of the game tree for which the modeller learns about P2’s setting

of η, shown in Figure 6.1:

Chance

K|J K|Q

1/6

γγ

pass

1

bet

bet

bet

pass

η1−η

1/6 1/6

bet

bet

pass

η1−η

α

J|Q

AB C2F F 1

Figure 6.1: Portion of Kuhn Poker Game Tree Relevant to Estimating η

Here the numbers of times that the leaves have been reached are denoted A, B, C, F1,

and F2. While A, B, and C are observable to P1, F1 and F2 events are indistinguishable,

and P1 can only observe the sum of the numbers of these two events F = F1 + F2. The

goal is to find the model with the highest probability of being the correct model, given

the observations. It is difficult to directly compute the probability of a model given game

observations, but it is much easier to compute the probability of the observations given the

2While Kuhn Poker is not discussed in [36], Finnegan Southey has shown derivations of the MAP esti-
mates for Kuhn Poker in personal communications with the author.

134



model, which is why Bayes’ Rule is important:

Pr(Model|Observations) =
Pr(Observations|Model) Pr(Model)

Pr(Observations)
.

If all models are considered equally likely a priori, then

Pr(Model|Observations) ∼ Pr(Observations|Model)

and the task is to find a model which maximizes the right-hand quantity. Focusing just on

η and the observed quantities A, B, C, and F , the goal is to find an η which maximizes

Pr(A,B,C, F |η) =
(
A+B

A

)

ηA(1 − η)B

︸ ︷︷ ︸

(i)

F∑

F2=0

(
C + F

F2

)(
1

2

)C+F1
(

1

2

)F2

︸ ︷︷ ︸

(ii)

(
C + F1

F1

)

ηC(1 − η)F1(1)F2

︸ ︷︷ ︸

(iii)

.

The term (i) preceding the summation is the probability of the J|Q observations given η,

while the probability of the K|? observations are being summed over all possible splittings

of F into the unknown quantities F1 and F2. The term (ii) is the probability that P2 holds

the Jack F2 times and the Queen C +F1 times (F1 = F − F2) when P1 holds the King and

bets in Round One. This is multiplied by (iii), the probability that P2 would call C times

with the Queen, fold F1 times with the Queen, and fold F2 times with the Jack.

The key difference between the estimates introduced in Chapter 3 and the estimate

derived from continuing this MAP approach, is that previously a single splitting of F was

considered (based on probabilities of the deal and the likelihood of the preceding sequence

of events) which led to a simple formula for the estimate. The MAP approach considers all

possible splittings of F and the probability of each splitting.

Continuing the MAP approach, the probability can be significantly simplified. Since

this is a maximization problem, constants will be dropped as they are moved outside the

summation, in order to simplify these formulas:

Pr(A,B,C, F |η) ∼ ηA+C(1 − η)B
F∑

F2=0

(C + F )!

F2!(C + F1)!

(C + F1)!

F1!C!
(1 − η)F1(1)F2

∼ ηA+C(1 − η)B
F∑

F2=0

F !

F1!F2!
(1 − η)F1(1)F2

= ηA+C(1 − η)B
F∑

F2=0

(
F

F2

)

(1 − η)F−F2(1)F2

Recognizing that the summation is the binomial expansion of (1 + (1− η))F , the goal is

to find an η which maximizes

f(η) = ηA+C(1 − η)B(2 − η)F
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Setting ∂f
∂η = 0, one determines that η must satisfy the equation

(A+B + C + F )η2 + (−3A− 3C − 2B − F )η + (2A+ 2C) = 0

and the quadratic formula can be used to solve for η (note that only the root which lies in

the interval [0, 1] is considered),

η̂ =
−bη −

√

b2η − 4aηcη

2aη

where

aη = A+B + C + F

bη = −3A− 3C − 2B − F

cη = 2A+ 2C

MAP estimates for ξ, α, β and γ can be derived similarly. The following study compares

the results of the Chapter 3 estimators to the MAP estimators to see if either is more

effective in practice.

Figure 6.2 shows payoff-rate plots for the explicit modeller using the BalancedExplore

data-collection method with both the Chapter 3 estimators and the MAP estimators. The

two estimators produce nearly identical results for all of the testpoints, except for the two

testpoints shown. These testpoints, O2 and O3, are a little different because the initial esti-

mates (0.5, 0.5) provides a very good initial payoff-rate to the modeller. Unlucky sequences

of initial observations cause bad models to be formed in a small proportion of the trials, but

the penalty for these bad models is large, while the rewards for the trials which improve

their models is negligible. This causes the average payoff-rates of the models to initially

decrease, before rebounding and climbing back towards the best-response rate.

In the plots shown in Figure 6.2, the payoff-rate for the modeller using the MAP estima-

tors does not quite decrease as much as that of the modeller using the Chapter 3 estimators.

This suggests that the MAP estimators are a little more likely to devalue the unlucky se-

quences of initial observations which cause bad models. However, the gap is quite small and

following hand 40 for O2 and hand 80 for O3, the payoff-rates are virtually identical. Thus

it appears that the MAP estimators create marginally better models for a few opponents,

while producing identical results for most.
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Figure 6.2: Payoff-Rate Comparison of MAP Estimates vs Chapter 3 Estimates
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Chapter 7

Conclusions

7.1 Summary

This thesis has studied the effectiveness of two general types of opponent modelling, explicit

and implicit, in a game of imperfect information. The game used was the small game of

Kuhn Poker, whose small size allowed for indepth analysis of the positive and negative results

achieved by the modelling methods. The test opponents used fixed strategies, as learning to

model stationary opponents is a first step towards modelling nonstationary ones. Overall,

this is an ideal setting for opponent modelling in an imperfect information game, as it avoids

the problems of sparse data, high variance, and opponents that change strategies to remain

a moving target for the modelling methods. The goal of this research was to be able to learn

an exploitive model of an opponent quickly in this ideal setting, and identify any problems

which make this goal difficult to achieve.

The explicit modelling techniques assume the opponent is playing a stochastic strategy,

for which each undominated action has a unique parameter associated with it that specifies

the probability of taking that action. The explicit modeller generates point estimates of each

of the opponent’s parameters, and then uses this model to identify opponent weaknesses

and develop a counter-strategy which takes advantage of these weaknesses. Overcoming the

partial observability of the game is a major issue, and techniques dealing with this issue

were described in Chapter 3, which detailed how to create parameter estimates in situations

of varying levels of information.

Implicit modelling is an approach which is basically oblivious to what precise errors

are being made by the opponent. Instead, attempts are made to evaluate counter-strategies

against the opponent, by playing these counter-strategies and observing the game outcomes.

The implicit modelling approach was implemented in Chapter 5 by adapting the Exp3

algorithm [2] to the problem, and modifications were made to the algorithm to greatly
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improve the short-term performance. These modifications include doing information sharing

between experts (so that multiple experts are rewarded on each hand), as well as calculating

the average reward of each expert instead of the cumulative reward, and ensuring that

equally likely holdings contribute equally within each expert’s score.

The modelling techniques were evaluated with two key metrics, each of which assumes

that the modeller learns a model during hands 1 to t (the exploration phase), and then

stops all learning and plays the top-rated counter-strategy from hand t + 1 onwards (the

exploitation phase). The first metric, the expected payoff-rate of the counter-strategy played

from hand t + 1 onwards, indicates how good the model is at time t. The second metric,

the expected total winnings (assuming a fixed-length match), factors the cost of learning

the model into the evaluation. A third metric, the proportion of trials with expected total

winnings above equilibrium, is essentially a supporting measure for the total winnings metric.

The total winnings metric measures the average performance of the modelling methods,

while the proportion above equilibrium metric indicates whether a good result on the total

winnings graph is the average of a few very lucky trials and many mediocre ones, or instead

an average of many good trials.

Explicit modellers using different methods of collecting data were compared in Chapter 4,

where several interesting results were demonstrated. First, strategies which are equally

exploitable often do not have equivalent data-collection value; there are some equilibrium

strategies for the modeller that allow effective learning, while there are other equilibrium

strategies that prevent learning from occuring. Second, the use of exploratory data-collection

strategies (which play in an exploitable fashion in order to gain higher-quality information)

allows for faster learning. However, this higher-quality data-collection often comes at an

extra cost over safer data-collection strategies, and this forces the modeller to switch from

exploration to exploitation early in a match if he expects to win. Third, it is not necessary

to have good initial estimates to achieve good modelling results, as the impact of these

estimates (positive or negative) is quickly eliminated when the estimates have low weights.

Implicit modellers, which were evaluated in experiments shown in Chapter 5, are not

as successful in creating useful models in Kuhn Poker as the explicit modellers. For most

test opponents, the payoff-rate graphs for the implicit modellers converge much more slowly

to the best-response rate. Explicit modellers achieve better results because they attempt

to understand the strategy played by the opponent, which is possible to do in this small

setting. Implicit modellers ignore the strategy played by the opponent, focusing only on the

scores given to the counter-strategies played. One positive aspect of the implicit modelling

methods is that since they are based on the Exp3 framework, the data-collection strategy of
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the modeller is partially adaptive to the opponent, which often results in greater winnings

for the implicit modellers during the exploration phase than the winnings achieved by the

explicit modellers.

The key result of this research is that even in an ideal setting, opponent modelling can

be difficult. Despite the elimination of the challenges of dealing with a very high variance

game, sparse data, and a nonstationary opponent, the opponent modelling methods are not

always able to find the best-response strategy within 200 hands. The fact that an opponent’s

decisions are often only partially observable, and that there is still variance in this small game

result in incorrect models being generated. However, although the best-response strategy

is not always found, in most cases the methods do discover a good counter-strategy to use

against the opponent, and are able to achieve expected winnings beyond equilibrium.

7.2 Limitations

The fact that this research has been performed in an ideal setting means that it is difficult

to draw general conclusions about the techniques used. The small size of the game allows

the modelling methods to make many observations about each of the opponent’s possible

decisions, a situation that is not the case in most real-world games. One way of dealing with

the lack of data available in a larger game is to use abstractions to create an approximation

of the game which is smaller; for example, situations which are similar, such as when the

opponent holds a very strong hand, can be treated as identical. Partial observability also

becomes a much bigger problem in large games, as there are more possibilities for opponent

holdings, making it very difficult to make conclusions about the opponent’s decision making.

One reason why implicit modelling techniques should be easier to implement in large games

is that these techniques don’t require knowledge of the opponent’s hand.

Another major assumption of this research is that the opponent’s strategy is fixed. A

strong player in a real-world game such as poker is likely to vary his strategy over the course

of a match. Many players are even known to present a specific “table image” (the model

that the opponents develop of the player based on his actions) early in a match, before

radically changing strategies to take advantage of their opponents’ models. Thus being able

to model nonstationary opponents is a key to success against strong players. One method

of dealing with nonstationary opponents is to put more emphasis in the model on recent

observations; the decaying of earlier observations will help to keep up with an opponent

changing strategies, but may prove to be worse against stationary opponents, as useful

older data is forgotten.

The assumption that the modeller plays a learning strategy from hands 1 to t and
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then freezes the model and plays only the recommended counter-strategy from that point

on is a little too simplistic. First of all, it is likely that the modeller would continue to

learn and refine his model after switching to an exploitive strategy, as he continues to

make observations about the opponent; unfortunately, cases do arise in real games where

the modeller’s counter-strategy will prevent him from learning valuable information which

might make him change his model. In a real game it is also unlikely that the modeller

would switch to playing only the recommended counter-strategy for a couple of reasons; one

is that the counter-strategy might not allow the modeller to refine and correct his model

if it is incorrect (or becomes incorrect when the opponent changes strategies). The other

reason is that the modeller does not want to become too predictable, which is likely to

occur if he constantly repeats the same strategy, and could result in the opponent changing

strategies to counter-attack. A change to the explicit model that might help in maintaining

a variety of play (which hopefully aids continued learning) is to fit each opponent parameter

to a distribution of possibilities, rather than a single point estimate; the counter-strategy

recommended by the model could then be a mixture of the counter-strategies to each of the

opponent’s possible parameter settings.

The explicit modellers presented in this thesis use very simple strategies for collecting

data, as they repeatedly use a single fixed strategy. Data-collection could be improved by

changing strategies when some parameters have been precisely estimated and others require

greater attention. Another alternative is that an explicit modeller could make use of an

Exp3-like framework, playing promising counter-strategies more often during the exploration

phase, in order to better discriminate between the promising strategies and increase winnings

during the exploration phase as well.

The implicit modelling techniques presented here are very limited due to the lack of

information sharing performed in comparison to that of the explicit modellers. For implicit

modelling to achieve similar results, increasing the amount of information sharing is probably

the only answer; the key is to ensure expert updates are balanced. Implicit modelling

techniques do have many nice properties, including having zero average external regret in

the long-term and being easy to implement, so if the information-sharing problem can be

solved, these methods might become the preferred opponent modelling methods.

7.3 Final Word

Finding game-theoretic solutions to large games of imperfect information, such as Texas

Hold’em poker, is beyond the limits of today’s computational technology. In order to de-

velop strong computer players for these games, opponent modelling techniques must be used

141



to adapt to different opponents. This thesis has compared two general types of opponent

modelling in an ideal setting, and has showed that modelling in this ideal setting is a non-

trivial problem. In the process, analysis has shown why the difficulties arise, and which

modelling methods best deal with these difficulties. Although modelling in this ideal setting

has not produced perfect models of the opponents, there have been many positive results,

including showing that opponent modelling is often better than equilibrium solutions. Fi-

nally, while the techniques of explicit modelling are superior in the setting studied here,

both explicit and implicit methods hold promise for larger games.
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