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Abstract
Poker is a family of games that exhibit imperfect informa-
tion, where players do not have full knowledge of past events. 
While many perfect information games have been solved 
(e.g., Connect-Four and checkers), no nontrivial imperfect 
information game played competitively by humans has 
previously been solved. In this paper, we announce that 
the smallest variant of poker in-play, heads-up limit Texas 
hold’em, is now essentially weakly solved. Furthermore, this 
computation formally proves the common wisdom that the 
dealer in the game holds a significant advantage. This result 
was enabled by a new algorithm, CFR+, which is capable of 
solving extensive-form games three orders of magnitude 
larger than previously possible. This paper is an extended 
version of the original 2015 Science article,9 with additional 
results showing Cepheus’ in-game performance against 
computer and human opponents.

1. INTRODUCTION
Games have been intertwined with the earliest developments in 
computation, game theory, and Artificial Intelligence (AI). At the 
very conception of computing, Babbage had detailed plans for 
an “automaton” capable of playing tic-tac-toe and dreamt of his 
Analytical Engine playing chess.4 Both Alan Turing46 and Claude 
Shannon,40 on paper and in hardware respectively, developed 
programs to play chess as validation of early ideas in computa-
tion and AI. For over a half-century, games have continued to 
act as testbeds for new ideas and the resulting successes have 
marked significant milestones in the progress of AI: For exam-
ple, the checkers-playing computer program Chinook becoming 
the first to win a world championship title against humans,38 
Deep Blue defeating Kasparov in chess,14 and Watson defeat-
ing Jennings and Rutter on Jeopardy!17 However, defeating top 
human players is not the same as “solving” a game, that is, com-
puting a game-theoretically optimal solution that is incapable 
of losing against any opponent in a fair game. Solving games 
has also served as notable milestones for the advancement of 
AI, for example, Connect-Four2 and checkers.39

Every nontrivial game played competitively by humans 
that has been solved to-date is a perfect information game.a 

The original version of this paper was published in 
Science 347, 6218 (Jan. 2015) 145–149. Adapted with 
permission from AAAS.

In perfect information games, all players are informed of 
everything that has occurred in the game prior to making 
a decision. Chess, checkers, and backgammon are exam-
ples of perfect information games. In imperfect informa-
tion games, players do not always have full knowledge of 
past events (e.g., cards dealt to other players in bridge and 
poker, or a seller’s knowledge of the value of an item in an 
auction). These games are more challenging, with theory, 
computational algorithms, and instances of solved games 
lagging behind results in the perfect information setting.b 
And, while perfect information may be a common prop-
erty of parlor games, it is far less common in real-world 
decision making settings. In a conversation recounted by 
Bronkowski, John von Neumann, the founder of modern 
game theory, made the same observation, “Real life is not 
like that. Real life consists of bluffing, of little tactics of 
deception, of asking yourself what is the other man going 
to think I mean to do. And that is what games are about in 
my theory.”12

Von Neumann’s statement hints at the quintessential 
game of imperfect information: the game of poker. Poker 
involves each player being dealt private cards, with play-
ers taking structured turns making bets on having the 
strongest hand (possibly bluffing), calling opponent bets, 
or folding to give up the hand. Poker played an important 
role in the early developments of the field of game theory. 
Borel7 and von Neumann’s47, 48 foundational works were 
motivated by developing a mathematical rationale for 
bluffing in poker, and small synthetic poker gamesc were 
commonplace in many early papers.7, 29, 32, 48 Poker is also 
arguably the most popular card game in the world with 
over 150mn players worldwide.1 The most popular vari-
ant of poker today is Texas hold’em. When it is played 
with just two-players (heads-up) and with fixed bet-sizes 
and number of raises (limit), it is called Heads-Up Limit 
Hold’Em (HULHE).10 HULHE was popularized by a series 

a We use the word trivial to describe a game that can be solved without the 
use of a machine. The one near-exception to this claim is oshi-zumo, but it 
is not played competitively by humans and is a simultaneous-move game 
that otherwise has perfect information.13 Furthermore, almost all nontrivial 
games played by humans that have been solved to-date also have no chance 
elements. The one notable exception is hypergammon, a three-checker 
variant of backgammon invented by Hugh Sconyers in 1993 which he then 
strongly solved, that is, the game-theoretic value is known for all board 
 positions. It has seen play in human competitions. See http://www.bkgm.com/
variants/HyperBackgammon.html (accessed July 4, 2014).

b For example, Zermelo proved the solvability of finite, two-player, zero-sum, 
perfect information games in 1913,51 while von Neuman’s more general 
minimax theorem appeared in 1928.47 Minimax and alpha-beta pruning, the 
fundamental computational algorithm for perfect information games, was 
developed in the 1950s, while Koller and Megiddo’s first polynomial-time 
technique for imperfect information games was introduced in 1992.26

c We use the word synthetic to describe a game that was invented for the 
 purpose of being studied or solved rather than played by humans. A synthetic 
game may be trivial, such as Kuhn poker,29 or nontrivial such as Rhode Island 
hold’em.41
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of high-stakes games chronicled in the book The Professor, 
the Banker, and the Suicide King.16 It is also the smallest 
variant of poker played competitively by humans. HULHE 
has 3.16 × 1017 possible states the game can reach mak-
ing it larger than Connect Four and smaller than check-
ers. However, as an imperfect information game, many of 
these states cannot be distinguished by the acting player 
as they involve information about unseen past events (i.e., 
private cards dealt to the opponent). As a result, the game 
has 3.19 × 1014 decision points where a player is required 
to make a decision.

While smaller than checkers, the imperfect infor-
mation nature of HULHE makes it a far more challeng-
ing game for computers to play or solve. It was 17 years 
after Chinook won its first game against world champion 
Marion Tinsley in checkers that the computer program 
Polaris won the first meaningful match against profes-
sional poker players.34 While Schaeffer et al. solved check-
ers in 2007,39 heads-up limit Texas hold’em poker, until 
now, was unsolved. This slow progress is not for lack of 
effort. Poker has been a challenge problem for artificial 
intelligence, operations research, and psychology with 
work going back over 40 years.6 17 years ago, Koller and 
Pfeffer28 declared, “we are nowhere close to being able 
to solve huge games such as full-scale poker, and it is 
unlikely that we will ever be able to do so.” The focus on 
HULHE as one example of “full-scale poker” began in ear-
nest over ten years ago,5 and became the focus of dozens  
of research groups and hobbyists after 2006 when it 
became the inaugural event in the Annual Computer 
Poker Competition,53 held in conjunction with the main 
conference of the Association for the Advancement of 
Artificial Intelligence (AAAI). This paper is the culmina-
tion of this sustained research effort toward solving a 
“full-scale” poker game.10

Allis3 gives three different definitions for solving a game. 
A game is said to be ultra-weakly solved if for the initial 
position(s), the game-theoretic value has been determined; 
weakly solved if for the initial position(s), a strategy has been 
determined to obtain at least the game-theoretic value, 
for both players, under reasonable resources; and strongly 
solved if for all legal positions, a strategy has been deter-
mined to obtain the game-theoretic value of the position, for 
both players, under reasonable resources. In an imperfect 
information game, where the game-theoretic value of a posi-
tion beyond the initial position is not unique, Allis’s notion 
of “strongly solved” is not well-defined. Furthermore, imper-
fect information games, due to stochasticity in the players’ 
strategies or the game itself, typically have game-theoretic 
values that are real-valued rather than discretely valued 
(such as “win,” “loss,” and “draw” in chess and checkers), 
and only achieved in expectation over many playing of the 
game. As a result, game-theoretic values are often approxi-
mated, and so an additional consideration in solving a game 
is the degree of approximation in a solution. A natural level 
of approximation under which a game is essentially weakly 
solved is if a human lifetime of play is not sufficient to estab-
lish with statistical significance that the strategy is not an 
exact solution.

In this paper, we announce that heads-up limit Texas 
hold’em poker is essentially weakly solved. Furthermore, we 
bound the game-theoretic value of the game, proving that 
the game is a winning game for the dealer.

2. SOLVING IMPERFECT INFORMATION GAMES
The classical representation for an imperfect information 
setting is the extensive-form game. Here the word “game” 
refers to a formal model of interaction between self-
interested agents and applies to both recreational games 
and serious endeavors such as auctions, negotiation, and 
security. See Figure 1 for a graphical depiction of a por-
tion of a simple poker game in extensive-form. The core of 
an extensive-form game is a game tree specifying branches of 
possible events, namely player actions or chance outcomes. 
The branches of the tree split at game states and each 
is associated with one of the players (or chance) who is 
responsible for determining the result of that event. The 
leaves of the tree signify the end of the game, and have 
an associated utility for each player. The states associated 
with a player are partitioned into information sets, which 
are sets of states which the acting player cannot distin-
guish between (e.g., corresponding to states where the 
opponent was dealt different private cards). The branches 
from states within an information set are the player’s 
available actions. A strategy for a player specifies for 
each information set a probability distribution over the 

Figure 1. Portion of the extensive-form game representation of 
three-card Kuhn poker29 where player 1 is dealt a queen (Q) and 
the opponent is given either the Jack (J) or King (K). Game states 
are circles labeled by the player acting at each state (“c” refers 
to chance, which randomly chooses the initial deal). The arrows 
show the events the acting player can choose from, labeled with 
their in-game meaning. The leaves are square vertices labeled with 
the associated utility for player 1 (player 2’s utility is the negation 
of player 1’s). The states connected by thick gray lines are part 
of the same information set, that is, player 1 cannot distinguish 
between the states in each pair since they represent a different 
unobserved card being dealt to the opponent. Player 2’s states are 
also in information sets, containing other states not pictured in this 
diagram.
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only 288 information sets, is intractable having over 1086  
possible deterministic strategies.

Sequence-Form Linear Programming. Romanovskii35 
and later Koller et al.26, 27 established the modern era of solving 
imperfect information games, introducing the sequence-
form representation of a strategy. With this simple change of 
variables, they showed that the extensive-form game could  
be solved directly as an LP, without the need for an expo-
nential conversion to normal-form. Sequence-Form Linear 
Program (SFLP) was the first algorithm to solve imperfect 
information extensive-form games with computation time 
that grows as a polynomial of the size of the game repre-
sentation. In 2003, Billings et al.5 applied this technique to 
poker, solving a set of simplifications of HULHE to build the 
first competitive poker-playing program. In 2005, Gilpin and 
Sandholm19 used the approach along with an automated 
technique for finding game symmetries to solve Rhode 
Island Hold’em,41 a synthetic poker game with 3.94 × 106 
information sets after symmetries are removed.

Counterfactual Regret Minimization. In 2006, the Annual 
Computer Poker Competition was started.53 The competition 
drove significant advancements in solving larger and larger 
games, with multiple techniques and refinements being  
proposed in the years that followed.36, 37 One of the tech-
niques to emerge, and currently the most widely adopted in  
the competition, is Counterfactual Regret Minimization (CFR).d  
CFR is an iterative method for approximating a Nash equilib-
rium of an extensive-form game through the process of repeated 
self-play between two regret-minimizing algorithms.10, 52 
Regret is the loss in utility an algorithm suffers for not having 
selected the single best deterministic strategy, which can 
only be known in hindsight. A regret-minimizing algorithm is 
one that guarantees its regret grows sub-linearly over time, 
and so eventually achieves the same utility as the best deter-
ministic strategy. The key insight of CFR is that instead of 
storing and minimizing regret for the exponential number of 
deterministic strategies, CFR stores and minimizes a modi-
fied regret for each information set and subsequent action, 
which can be used to form an upper bound on the regret for 
any deterministic strategy. An approximate Nash equilib-
rium is retrieved by averaging each player’s strategies over 
all of the iterations, and the approximation improves as the 
number of iterations increases. The memory needed for the 
algorithm is linear in the number of information sets, rather 
than quadratic, which is the case for efficient LP methods.25 
Since solving large games is usually memory-bound, CFR 
has resulted in as dramatic an increase in the size of solved 
games as Koller et al.’s advance. Since its introduction in 

Figure 2. Increasing sizes of imperfect information games solved 
over time. The shaded regions refer to the technique used to achieve 
the result with references in the main text. CFR+ is the algorithm 
used in this work and the dashed line shows the result established in 
this paper.
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available actions. If the game has exactly two players and 
the utilities at every leaf sum to zero, the game is called 
zero-sum.

The classical solution concept for games is a Nash equi-
librium, a strategy for each player such that no player can 
increase their expected utility by unilaterally choosing a 
different strategy. All finite extensive-form games have at 
least one Nash equilibrium. In zero-sum games, all equi-
libria have the same expected utilities for the players, and 
this value is called the game-theoretic value of the game. An 
ε-Nash equilibrium is a strategy for each player where no 
player can increase their utility by more than ε by choos-
ing a different strategy. By Allis’s categories, a zero-sum 
game is ultra-weakly solved if its game-theoretic value is 
computed, and weakly solved if a Nash equilibrium strat-
egy is computed. We call a game essentially weakly solved 
if an ε-Nash equilibrium is computed for a sufficiently 
small ε to be statistically indistinguishable from zero in a 
human lifetime of played games. For perfect information 
games, solving typically involves a (partial) traversal of the 
game tree. However, the same techniques cannot apply 
to imperfect information settings. We briefly review the 
advances in solving imperfect information games, bench-
marking the algorithms by their progress in solving increas-
ingly larger synthetic poker games as summarized shown 
in Figure 2.

Normal-Form Linear Programming. The earliest method 
for solving extensive-form games involved converting it 
into a normal-form game, represented as a matrix of val-
ues for every pair of possible deterministic strategies in 
the original extensive-form game, and then solving it with 
a Linear Program (LP). Unfortunately, the number of pos-
sible deterministic strategies is exponential in the num-
ber information sets of the game. So, while LPs can handle 
normal-form games with many thousands of strategies, 
even just a few dozen decision points makes this method 
impractical. Kuhn poker, a poker game with three cards, 
one betting round, and a one bet maximum having a total 
of 12 information sets (see Figure 1), can be solved with this 
approach. But even Leduc hold’em,42 with six cards, two 
betting rounds, and a two bet maximum having a total of 

d Another notable algorithm to emerge from the Annual Computer Poker 
Competition is an application of Nesterov’s excessive gap technique33 
to solving extensive form games.18 The technique has some desirable 
properties, including better asymptotic time complexity that what is known 
for CFR. However, it has not seen widespread use among competition 
participants due to its lack of flexibility in incorporating sampling schemes 
and its inability to be used with powerful (but unsound) abstractions that 
employ imperfect recall. Recently, Waugh and Bagnell49 have shown that  
CFR and the excessive gap technique are more alike than different, suggesting 
that the individual advantages of each approach may be attainable in  
the other.
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empirically observed CFR+ to require considerably less com-
putation than state-of-the-art sampling CFR,22 while also 
being highly suitable for massive parallelization.

Theorem 1.e Given a set of actions A, and any sequence of T 
value functions vt: A  ℜ with a bound L such that |vt(a) − vt(b)| 
≤ L for all t and a, b ∈ A, an agent acting according to the regret-
matching+ algorithm will have regret of at most .

Like CFR, CFR+ is an iterative algorithm that computes suc-
cessive approximations to a Nash equilibrium solution. The 
quality of the approximation can be measured by its exploit-
ability: the amount less than the game value that the strategy 
achieves against the worst-case opponent strategy in expec-
tation.10 Computing the exploitability of a strategy involves 
computing this worst-case value, traditionally requiring a 
traversal of the entire game tree. This was long thought to 
be intractable for games the size of HULHE. Recently it was 
shown that this calculation could be dramatically acceler-
ated by exploiting the imperfect information structure of the 
game and regularities in the utilities.23 This is the technique 
we use to confirm the approximation quality of our resulting 
strategy. The technique and implementation has been veri-
fied on small games and against independent calculations  
of the exploitability of simple strategies in HULHE.

A strategy can be exploitable in expectation and yet, 
due to chance elements in the game and randomization 
in the strategy, its worst-case opponent still is not guaran-
teed to be winning after any finite number of hands. We 
define a game to be essentially solved if a lifetime of play 
is unable to statistically differentiate it from being solved 
at 95% confidence. Imagine someone playing 200 hands 
of poker an hour for 12hrs a day without missing a day for 
70 years. Furthermore imagine them employing the worst-
case, maximally exploitive, opponent strategy, and never 
making a mistake. Their total winnings, as a sum of many 
millions of independent outcomes, would be normally 
distributed. Hence, the observed winnings in this life-
time of poker would be 1.64 standard deviations or more 
below its expected value (i.e., the strategy’s exploitability) 
at least 1 time out of 20. Using the standard deviation of 
a single hand of HULHE, which has been reported to be 
around 5bb/g (big-blinds per game, where the big-blind is 
the unit of stakes in HULHE),11 we arrive at a threshold of 

. So, an approximate 
solution with an exploitability under 1mbb/g (milli-big-
blinds per game) cannot be distinguished with high con-
fidence from an exact solution, and indeed has a 1-in-20 
chance of winning against its worst-case adversary even 
after a human lifetime of games. Hence, 1mbb/g is the 
threshold for declaring HULHE essentially solved.

4. THE SOLUTION
Our CFR+ implementation was executed on a cluster of 200 
computation nodes each with 24 2.1GHz AMD cores, 32GB 

2007, CFR has been used to solve increasingly complex sim-
plifications of HULHE, reaching as many as 3.8 × 1010 infor-
mation sets in 2012.20

3. SOLVING HEADS-UP LIMIT HOLD’EM
The full game of HULHE has 3.19 × 1014 information sets. 
Even after removing game symmetries it has 1.38 × 1013, that 
is, three orders of magnitude larger than previously solved 
games. There are two challenges for established CFR vari-
ants to handle games at this scale: memory and computa-
tion. During computation CFR must store the resulting 
solution and the accumulated regret values for each infor-
mation set. Even with single-precision (four byte) floating 
point numbers, this requires 262TB of storage. Furthermore, 
past experience has shown that a three order of magnitude 
increase in the number of information sets requires at least 
three orders of magnitude more computation. In order to 
tackle these two challenges we employ two ideas recently 
proposed by Tammelin, a co-author of this paper.44

To address the memory challenge we store the approxi-
mate solution strategy and accumulated regrets using com-
pression. For the solution and regrets we use fixed-point 
arithmetic by first multiplying all values by a scaling factor 
and truncating them to integers. The resulting integers are 
then ordered to maximize compression efficiency, with com-
pression ratios around 13-to-1. Overall, we require under 
11TB of storage during the computation, which is distrib-
uted across a cluster of computation nodes. This amount 
is in-feasible to store in main memory, and so we store the 
compressed strategy and regret values on each node’s local 
disk. Each node is responsible for a set of subgames, that 
is, portions of the game tree partitioned based on publicly 
observed actions and cards so that each information set is 
associated with one subgame. The regrets and strategy for a 
subgame are loaded from disk, updated, and saved back to 
disk, using a streaming compression technique that decom-
presses and recompresses portions of the subgame as 
needed. By making the subgames large enough, the update-
time dominates the total time to process a subgame. With 
disk pre-caching, the inefficiency incurred by disk storage is 
approximately 5% of the total time.

To address the computation challenge we use a variant of 
CFR called CFR+.10, 44 CFR implementations typically sample 
only portions of the game tree to update on each iteration. 
They also employ regret-matching at each information set, 
which maintains regrets for each action and chooses among 
actions with positive regret with probability proportional 
to that regret. Instead, CFR+ does exhaustive iterations over 
the entire game tree, and uses regret-matching+, a vari-
ant of regret-matching where regrets are constrained to be 
non-negative. Actions that have appeared poor (with less 
than zero regret for not having been played) will be chosen 
again immediately after proving useful (rather than waiting 
many iterations for the regret to become positive). Finally, 
in contrast with CFR, we have observed empirically that the 
exploitability of the players’ strategies during the computa-
tion regularly converges to zero. Therefore, we skip the step 
of computing and storing the average strategy, instead using 
the players’ current strategies as the CFR+ solution. We have 

e Theorem 1 and others providing the theoretical support for CFR+ did  
not appear in the original version of this article, and were published in a 
 subsequent paper.45
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strategy caps the betting less than 0.01%, and the hand most 
likely to cap is a pair of twos, with probability 0.06%. Perhaps 
more importantly, the strategy chooses to play, that is, not 
fold, a broader range of hands as the non-dealer than most 
human players (see the relatively small amount of red in 
Figure 4b). It is also much more likely to re-raise when hold-
ing a low-rank pair (such as threes or fours).g

While these observations are only for one example of 
game-theoretically optimal play (different Nash equilibria 
may play differently), they both confirm as well as contradict 
current human beliefs about equilibria play, and illustrate 
that humans can learn considerably from such large-scale 
game-theoretic reasoning.

5. IN-GAME RESULTS
In this extended version of the original paper,9 we present 
additional results measuring Cepheus’ in-game perfor-
mance against computer agents and human opponents. 
HULHE has served as a common testbed for artificial intel-
ligence research for more than a decade, and researchers 
have produced a long series of computer agents for the 
domain. This effort was largely coordinated by the Annual 
Computer Poker Competition (ACPC) which begain in 2006 
with HULHE. While each year’s top agents outperformed the 
older agents in the competition, and so appeared to be con-
verging to optimal play, their actual worst-case exploitability 
was unknown. In 2011, an efficient best response technique 
was developed that made it feasible to measure a computer 
agent’s exploitability,23 and for the first time researchers 
were able to exactly measure their progress towards the goal 
of solving the game. A key result in that paper was that top 
ACPC agents only defeated each other by tiny margins, and 
yet had a wide range of exploitability. Using Cepheus, we can 
now also evaluate these historical agents through matches 
against an essentially optimal strategy.

of Random Access Memory (RAM), and a 1TB local disk. 
We divided the game into 110,565 subgames (partitioned 
based on preflop betting, flop cards, and flop betting). The 
subgames were split among 199 worker nodes, with one 
parent node responsible for the initial portion of the game-
tree. The worker nodes performed their updates in parallel, 
passing values back to the parent node for it to perform its 
update, taking 61 min on average to complete one iteration. 
The computation was then run for 1,579 iterations, taking 
68.5 days, and using a total of 900 core years of computationf 
and 10.9TB of disk space, including file system overhead 
from the large number of files.

Figure 3 shows the exploitability of the computed strat-
egy with increasing computation. The strategy reaches an 
exploitability of 0.986mbb/g, making HULHE essentially 
weakly solved. Using the separate exploitability values for 
each position (as the dealer and non-dealer) we get exact 
bounds on the game-theoretic value of the game: between 
87.7mbb/g and 89.7mbb/g for the dealer, proving the com-
mon wisdom that the dealer holds a significant advantage 
in HULHE.

The final strategy, as a close approximation to a Nash 
equilibrium, can also answer some fundamental and long-
debated questions about game-theoretically optimal play in 
HULHE. Figure 4 gives a glimpse of the final strategy in two 
early decisions of the game. Human players have disagreed 
about whether it may be desirable to “limp,” that is, call as 
the very first action rather than raise, with certain hands. 
Conventional wisdom is that limping forgoes the opportu-
nity to provoke an immediate fold by the opponent, and so 
raising is preferred. Our solution emphatically agrees (see 
the absence of blue in Figure 4a). The strategy limps just 
0.06% of the time and with no hand more than 0.5%. In other 
situations, the strategy gives insights beyond conventional 
wisdom, indicating areas where humans might improve. 
The strategy rarely “caps,” that is, makes the final allowed 
raise, in the first round as the dealer, whereas some strong 
human players cap the betting with a wide range of hands. 
Even when holding the strongest hand, a pair of aces, the 

f The total time and number of core years is larger than was strictly necessary  
as it includes computation of an average strategy that was later measured to  
be more exploitable than the current strategy and so discarded. The total 
space noted, on the other hand, is without storing the average strategy.
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Figure 4. Action probabilities in the solution strategy for two early 
decisions. Each cell represents one of the possible 169 hands (i.e., 
two private cards) with the upper diagonal consisting of cards 
with the same suit and the lower diagonal consisting of cards of 
different suits. The color of the cell represents the action taken: red 
for fold, blue for call, and green for raise, with mixtures of colors 
representing a stochastic decision.

g These insights were the result of discussions with Mr. Bryce Paradis, previously 
a professional poker player who specialized in HULHE.
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Figure 5 presents the exploitability of our historical 
agents and their average loss in games played against 
Cepheus. To reduce the impact of luck, a duplicate poker 
format was used where each game is played twice, using 
the same cards, but with the players in opposite positions. 
PsOpti4 was the first game theoretic strategy produced for 
HULHE, and was also the University of Alberta entry to 
the 2006 ACPC.5, h The University of Alberta entries to the 
ACPC were named Hyperborean, and from 2007 onwards, 
all were created using variants of CFR.i The Polaris 2007 
and 2008 agents were created by the University of Alberta 
for its two Man-vs.-Machine Poker Championship matches, 
in which Polaris narrowly lost in 2007 and narrowly won in 
2008; an analysis of these matches is available in24 [Chapter 
8]. Finally, the CFR-BR agent was our closest equilibrium 
approximation prior to this work.21 It used the same abstract 
game as Hyperborean 2011, but used an algorithm that 
solved for the abstract strategy with the lowest real game 
exploitability.

These results show that, with the exception of Hyper-
borean 2009, each new generation of strategies improved in 
both exploitability and in loss against an essentially optimal 

strategy. However, even though many of these strategies were 
highly exploitable, the rate at which they lose to Cepheus is 
quite low. This loss is difficult to measure with statistical 
confidence: a 100,000 game (non-duplicate) match would 
have a 95% confidence interval of 31mbb/g, larger than the 
performance difference between Cepheus and every agent 
but PsOpti4. Further, Hyperborean 2009 did improve over 
its predecessors in terms of in-game performance against 
Cepheus, and regressed in exploitability due to its use of 
“Strategy Grafting,” an unsound solving technique that 
solves an abstraction as a series of fragments.50 This tech-
nique allows for a much larger and finer grained abstraction 
than would otherwise be feasible, resulting in improved in-
game performance, but without theoretical guarantees on 
exploitability. Together, these results illustrate the difficulty 
in evaluating a strategy only through its competition perfor-
mance, instead of calculating its exploitability.

We can also measure Cepheus’ performance against 
human adversaries. After this article was first published in 
January 2015, our website allowed visitors to play against 
Cepheus and inspect its strategy.8 Each visitor chose a user-
name and played any number of short 100-game matches 
against Cepheus. Over the last two years, 39,564 unique 
usernames have played 98,040 matches, with 3,564,094 total 
games played.j Over this set of games, Cepheus is winning 
at a rate of 169.9 ± 5.2mbb/g with 95% confidence. However, 
most of the players did not finish a single 100-game match 
(only 7,878 players did so, with 20,374 completed matches in 
total), and so this winrate is likely not reflective of Cepheus’ 
performance against strong opponents.

Determining which of these players are strong is non-
trivial because of both variance in their matches, and the 
unequal amount of games played by each player. While both 
luck and skill contribute to a player’s performance, the high-
est-scoring players are more likely to be the luckiest rather 
than the strongest. Additionally, bias may be introduced if 
players keep playing while ahead, but quit if they are losing. 
In order to limit the impact of bias and evaluate Cepheus’ 
performance against different tiers of humans, we used 
the following method. First, we eliminated usernames with 
insufficient data that had played fewer than 500 games, leav-
ing 821 usernames playing 33,752 matches with 1,765,656 
games. Next, we divided each username’s games into two 
sets, called Rank and Test.k Each username’s Rank games 
were evaluated, and the resulting winrates were used to sort 
the players by performance. This ordering reflected both 
their skill and luck. The players were then divided equally 
into five tiers: the bottom 20% of usernames, 21–40% etc. 
Within each tier, the Test game results were averaged to pro-
duce a winrate for the tier, independent from the luck that 
affected the Rank games.

These results are shown in Figure 6. Cepheus’ esti-
mated winrate varies from 225 to 87mbb/g as we advance 
through the tiers, decreasing as the quality of the human 
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Name Year Exploitability Cepheus

PsOpti4 2003 – 74.9 ± 23.7
Hyperborean 2007 2007 298.106 27.4 ± 2.9
Polaris 2007 2007 275.880 26.2 ± 3.0
Hyperborean 2008 2008 266.797 22.5 ± 2.7
Polaris 2008 2008 235.294 22.2 ± 2.6
Hyperborean 2009 2009 440.823 18.9 ± 2.6
Hyperborean 2010 2010 135.427 10.8 ± 2.5
Hyperborean 2011 2011 106.035 8.0 ± 2.4
CFR-BR 2012 37.113 9.2 ± 2.6
Cepheus 2014 0.986 0

Figure 5. Exploitability and performance against Cepheus for earlier 
computer strategies. Results are in mbb/g, and indicate the expected 
winnings by the strategy’s opponent (a best response or Cepheus, 
respectively). The Cepheus matches involved 1mn games of 
duplicate poker (2mn games total), except for PsOpti4 which played 
20,000 duplicate games (40,000 games total).

h PsOpti4 acts too slowly for an exploitability calculation to be practical,  
or for a long match against Cepheus.
i In the inaugural 2006 ACPC, PsOpti4 was the core component of  
Hyperborean 2006.

j Many players quit before finishing the 100-game match.
k In each block of four sequential games, one pair (played in each position) 
was assigned to each set.



 

NOVEMBER 2017  |   VOL.  60  |   NO.  11  |   COMMUNICATIONS OF THE ACM     87

players improves. Even against the top 20% tier of play-
ers in this experiment, Cepheus’ winrate of 87mbb/g 
is higher than against any of our historical agents. It 
even exceeds 50mbb/g, a commonly cited benchmark 
for what a professional poker player seeks to win from a 
weaker opponent.

6. CONCLUSION
In this paper, we announced that heads-up limit Texas 
hold’em poker is essentially weakly solved. This is the first 
nontrivial imperfect information game played competi-
tively by humans to be solved. Even still, the reader may 
ask what is the ultimate significance of solving poker? The 
breakthroughs behind this result are general algorithmic 
advances that make game-theoretic reasoning in large-scale 
models of any sort more tractable. And, while seemingly 
playful, game theory has always been envisioned to have 
serious implications, for example, its early impact on cold 
war politics.31 More recently, there has been a surge in game-
theoretic applications involving security, including systems 
being deployed for airport checkpoints, air marshall sched-
uling, and coast guard patrolling.43 CFR algorithms, based 
on those described in this paper, have been used for robust 
decision-making in settings where there is no apparent 
adversary, with potential application to medical decision 
support.15 With real life decision-making settings almost 
always involving uncertainty and missing information, algo-
rithmic advances, such as those needed to solve poker, are 
needed to drive future applications. However, we also echo 
a response attributed to Alan Turing in defense of his own 
work in games, “It would be disingenuous of us to disguise 
the fact that the principal motive which prompted the work 
was the sheer fun of the thing.”30
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