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Abstract

Agent modelling is a challenging problem in many modern artificial intelligence applications. The

agent modelling task is especially difficult when handling stochastic choices, deliberately hidden

information, dynamic agents, and the need for fast learning. State estimation techniques, such as

Kalman filtering and particle filtering, have addressed many of these challenges, but have received

little attention in the agent modelling literature. This thesis explores the use of particle filtering for

modelling dynamic opponents in Kuhn poker, a simplified version of Texas Hold’em poker. We

demonstrate effective modelling both against static opponents as well as dynamic opponents, when

the dynamics are known. We then examine an application of Rao-Blackwellized particle filtering

for doing dual estimation, inferring both the opponent’s state and a model of its dynamics. Finally,

we examine the robustness of the approach to incorrect beliefs about the opponent and compare it

to previous work on opponent modelling in Kuhn poker.
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Chapter 1

Introduction

The rise of applications requiring interaction between independent agents has made coping with the

presence of other decision makers a key challenge for artificial intelligence. Agent modelling is one

tool for addressing this challenge. We begin by introducing agent modelling, its importance, and

the challenges one faces when modelling agents. Following this discussion, we present the thesis’

contributions to the field of agent modelling and an outline of the thesis.

1.1 Agent Modelling

Most people have daily interaction with a computer agent. Whether they are paying their phone

bill through the phone company’s automated receptionist, searching the Internet, or simply riding an

elevator, computer agents make decisions that impact peoples’ lives. Given the capacity to reason

about the behaviour of other agents, especially humans, these computer agents could assist people

more effectively. Agent modelling research aims to give computer agents this capability.

Formally, an agent is any autonomous decision maker – human or computer. Agent modelling

aims to enable computer agents to infer the beliefs, plans, or goals of other agents. More specifically,

agent modelling is the problem of building a predictive model of another agent’s future decisions

from, possibly incomplete, observations of past behavior. With an accurate predictive model of the

other agents, a computer agent can plan and execute a more effective response.

In addition to being beneficial to mundane day-to-day tasks, agent modelling can be applied

to domains throughout the artificial intelligence (AI) community. Applications as diverse as assis-

tive technologies, autonomous driving, and interactive entertainment all require or would benefit

significantly from accurate models of other agents, artificial or human.

Many domains have features that make it difficult to model other agents. These features include:

• Limited observations. We usually need to model agents quickly. This mean that we need to

build a model using a small number of observations.

• Stochastic observations. Other agents may make decisions stochastically (i.e. acting ac-

cording to some probability distribution over possible actions) or the environment may be
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stochastic (i.e. an environment with random events).

• Imperfect information. The environment is only partially observable (i.e. part of the en-

vironment is hidden to us). Moreover, other agents may be able to observe the information

hidden to the modeller.

• Dynamic behaviour. Other agents may change their behaviour over time. Examples of this

include customers changing their purchasing habits over time or a game player changing their

strategy over the course of one or more matches.

Depending on the domain, a modelling agent may need to account for any of these features.

Stochastic observations and dynamic behaviour require the agent to plan based on the expected out-

come of future decisions and environmental changes rather than a deterministic outcome. Imperfect

information makes it difficult to associate an agent’s observed behaviour with the state they were in

when they made the decision. The combination of stochastic observations, imperfect information,

and dynamic behaviour amplifies the challenge posed by each of these features. When combined,

these features make it difficult to determine if an agent’s observed behaviour is due to their stochas-

tic decisions, a change in their behaviour, or some element of the hidden environment. Finally, the

variability in possible future outcomes caused by these features make it difficult to form a reliable

agent model with only limited observations. Our work presents an agent modelling technique which

addresses all of these challenges.

1.2 Thesis Contributions

In this thesis we explore the use of state estimation techniques to address the four challenges of

agent modelling: limited observations, stochastic observations, imperfect information, and dynamic

behavior. State estimation tracks a stochastic process’ hidden state variables by observing noisy

functions of these variables. Such techniques represent uncertainty in the hidden state as a probabil-

ity distribution and use a recursive Bayes’ formula to update the belief with each new observation.

Although these techniques require a complete probabilistic model of the process dynamics and ob-

servations, techniques for dual estimation have relaxed this requirement by inferring these models

from data at the same time as estimating an agent’s state. To validate our use of state estimation

techniques for agent modelling, we demonstrate the algorithms in the domain of Kuhn poker (a

simplified variant of poker that will be explained further in Section 2.5.1).

The primary contribution of this work is our application of state estimation techniques for agent

modelling. State estimation has received little attention in the agent modelling literature, yet it

appears well-suited to the agent modelling task. This work demonstrates that state estimation is, in

fact, well-suited for agent modelling. Our experiments show that in addition to effectively modelling

static agents, state estimation lends itself nicely to modelling dynamic agents when the agent’s

dynamics are known.
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The second major contribution of this work is our use of dual estimation for inferring an agent’s

dynamics from data. We show that given the correct form of an agent’s dynamics model, we can

learn the model’s unknown parameters. Furthermore, our experiments show that dual estimation

makes our approach robust to unknown model parameters and even an incorrect form of the dynam-

ics model.

Our experiments show the efficacy of state estimation for agent modelling. In addition to im-

proving upon current techniques for agent modelling in Kuhn poker, the state estimation framework

is general enough to be applicable in many other domains. Moreover, the framework provides a

direct approach for modelling dynamic agents – a challenge which is often at most an afterthought

in many agent modelling techniques.

1.3 Thesis Outline

This thesis is presented as follows. Chapter 2 discusses work related to agent modelling. Chapter

3 presents background material on game theory and the theoretical foundations of state estimation

including the state estimation algorithms used in the thesis. Chapter 4 presents our application of

state estimation algorithms to Kuhn poker including further description of how dynamic opponents

are handled. In Chapter 5, we describe experiments against a variety of dynamic computer agents in

different scenarios. Finally, Chapter 6 concludes and provides directions for future research.
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Chapter 2

Related Work

Agent modelling has been explored under a number of different names and in a variety of domains.

In the artificial intelligence literature, problems like policy recognition, behaviour recognition, and

opponent modelling are all connected to the agent modelling problem. Before we explain our ap-

plication of state estimation to agent modelling, we will review some of the past work in agent

modelling. Each of the techniques presented represents a method for modelling agents in certain do-

mains. Although our approach bears similarities to many of these techniques, none of the previous

approaches handle the four agent modelling challenges to the same extent as our state estimation

approach. In particular, our approach to handle an agent’s dynamic behaviour is distinct from the

approaches mentioned here. We begin by describing related work in agent modelling and we will

conclude with a comparison of the different approaches to agent dynamics (Section 2.6).

2.1 Model Recognition

Agent modelling research in the areas of behaviour recognition, policy recognition, and plan recog-

nition all share a common feature. In general, each of them attempts to recognize an agent’s observed

behaviour as one of a discrete set of agent behaviours. This discrete set, or library, of agent be-

haviours is typically specified by hand before recognition takes place and is usually relatively small.

We will refer to algorithms that fall under these related domains as model recognition algorithms.

To contrast our work with this research we present two model recognition algorithms. The

algorithms we present are similar to our approach in that they handle stochastic observations and

imperfect information (though this is not true of all model recognition algorithms). In contrast to

model recognition in general, our work uses a parameterized continuum of agent behaviour rather

than a library of discrete behaviours.

Behaviour Hidden Markov Models

One example of a model recognition algorithm is presented in the behaviour recognition work by

Han and Veloso [11]. Their work attempts to recognize the behaviours of other agents using hidden
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Markov models in the domain of robot soccer. Before going into the details of their approach, we

briefly define the structure of a hidden Markov model.

Formally, a hidden Markov model (HMM) can be represented by a 5-tuple λ = {S, Z, A,B, π}

where S = {si} is the set of hidden states, and Z is the space of possible observations. Letting

Xt represent the unobservable state of the HMM at time t, A is a transition probability matrix

where aij = Pr(Xt+1 = sj |Xt = si), B = {bi(z) = Pr(z|Xt = si)} is the set of observation

probabilities (where z ∈ Z), and π is the initial state distribution where πi = Pr(X1 = si).

Han and Veloso represent each behaviour in their library with a separate Behaviour HMM

(BHMM). A behaviour HMM is effectively a HMM where the states correspond to different stages

of recognizing the specified behaviour. The states are divided into four categories: initial states, ac-

cept states, intermediate states, and reject states. Consider the behaviour of getting a graduate degree.

Initial states represent the set of states which an agent would start at for a given behaviour (e.g. apply-

ing for school). Accept states indicate when an agent has completed the given behaviours (e.g. thesis

submitted). Intermediate states represent sub-behaviours that need to be performed to complete the

high level behaviour (e.g. taking classes, doing research, writing a thesis). Finally, reject states indi-

cate behaviour that is contrary or unrelated to performing the given behaviour (e.g. dropping out of

school, travelling for three months).

To recognize what behaviour an agent is performing, a separate BHMM is instantiated for each

behaviour to test for. Moreover, because an agent may not start executing a behaviour at the same

time the BHMMs are instantiated, new BHMMs are instantiated at regular intervals to ensure one of

them is started close to when the agent begins. After instantiation, the probabilities for the states of a

BHMM are computed using the forward algorithm. Specifically, compute the following probability.

Pr(Xt = si|z1, . . . , zt, λ) =
αi(t)∑|S|
j αj(t)

where αj(t) =
|S|∑
i

αi(t− 1)aijbj(zt)

To prevent the number of BHMMs from growing without bound, a BHMM is removed when the

most likely state is a reject state with a probability above a specified threshold or if a specified

maximum time for the behaviour to run is exceeded. With the BHMMs running concurrently, we

can examine the probability of each BHMM’s accept states to determine the probability that the

agent is performing the specified behaviour.

Abstract Hidden Markov Models

Previous efforts in policy recognition by Bui and colleagues [7] also attempt to recognize an agent’s

behaviour. Unlike Han and Veloso’s work, which use a BHMM for each behaviour in their library,

this work uses a hierarchy of behaviours to represent their entire library. This work attempts to

recognize another agent’s behaviour using a Rao-Blackwellized particle filter (which we discuss in

Section 3.2.3) combined with a dynamic Bayesian network to simultaneously compute the probabil-

ity of each behaviour at each level in the hierarchy.
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More specifically, it is assumed that the agent being modelled behaves according to a hierarchy

of behaviours1. Consider the example presented in Section 3.3 of [7] for recognizing the behaviour

of people in a building. Behaviours at the bottom of the hierarchy consist of single step actions

(e.g.move left). Going up the hierarchy results in increasingly abstract behaviours. For instance, the

second, third, and fourth level policies could indicate which door to exit from in the room, wing,

or entire building, respectively. Although this hierarchy provides a convenient way to compose be-

haviours for the library, the resulting set of possible behaviours is still discrete and must be provided

before recognition can take place.

The specific formulation of the hierarchy’s abstract policies ensures that a behaviour only termi-

nates if all of the behaviours below it in the hierarchy have also finished. The authors use this fact to

construct a dynamic Bayesian network (DBN). Each level of the hierarchy (aside from the top and

bottom level) has two variables in the DBN: one to represent the policy used at that level, and one

to indicate if the policy finished on the current time step. The DBN also includes variables for the

state and observations (though observations can be omitted if the state is not hidden).

Performing inference in a DBN of this size is typically intractable. Due to the authors’ assump-

tion that a given policy can only terminate when all policies below it have terminated, they are able

to gain some conditional independence properties. Specifically, they observe that variables in the

current time slice are conditionally independent given the entire state history and the start and end

times of each of the policies. Given this information, updating the beliefs for each level of the policy

hierarchy becomes feasible.

Unfortunately it is impractical to have this information in general. Therefore, the authors employ

a Rao-Blackwellized particle filter (which we discuss in Section 3.2.3) to draw weighted samples of

the variables necessary to make the DBN computation tractable. The probabilities of the policies are

then computed from the tractable DBN structure using the samples. The weighted average of each

sample’s resulting policy probabilities is the resulting estimate for each policy’s probability given

the sequence of observations.

2.2 Model Learning

Another way to model agents is to learn a model of their behaviour from observations rather than

trying to recognize their behaviour from a library. We call this type of algorithm a model learning

algorithm. Unlike model recognition algorithms, model learning algorithms generally make some

assumptions about the general form of an agents’ behaviour and then they try to learn the agent’s

parameters given the assumed form.

There are many algorithms for learning an agent model and they each have their own strengths

and weaknesses. Section 2.5 describes a number of model learning techniques that were applied to

1Formally, they assume agents make decisions according to an abstract Markov policy (AMP) model. (also known as
options or policies of Abstract Markov Decision Processes).
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variants of poker. Like our approach, these techniques are able to model imperfect information and

stochastic decisions. On the other hand, some model learning techniques do not address either of

these challenges. We present one such technique by Carmel and Markovitch.

Modelling Agents as Deterministic Finite Automata

Carmel and Markovitch’s work proposed an algorithm for modelling an “opponent” in a game as a

deterministic finite automata (DFA) [8]. A DFA is a finite state machine where each state-input

pair has exactly one transition to the next state.

Using observations of the opponent, their algorithm iteratively builds a table, T , representing

the opponent’s DFA. Let t be the current time step. Furthermore, let Σ denote the set of possible

observations the opponent can make on any time step (including the null observation λ). The authors

assume that they receive perfect information about the world (i.e. the world can be fully observed

including the opponent’s actions). Therefore, each observation of the opponent consists of the oppo-

nent’s full observation history up to the current time step h1:t, and the opponent’s action or output,

ot. The rows of T represent the elements of R = {h1:jσ|σ ∈ Σ, 1 ≤ j ≤ t} which correspond

to all observed histories and their single observation extensions. The columns correspond to ele-

ments of Σ (although not all possible observations necessarily have a column). Upon receiving the

observation for time t, the table is expanded by letting R = R ∪ {h1:tσ|σ ∈ Σ} and setting the

table entry T (h1:t, λ) = ot. If the current observation is inconsistent with the DFA represented by

T (i.e. there are two elements in R, say r1 and r2, that are represented by the same state in the DFA

but T (r1, σ) 6= T (r2, σ) for some σ ∈ Σ) then their algorithm attempts to resolve the inconsistency.

Resolving inconsistencies is done in two ways. The easiest way is to add new states to the DFA. The

second way is to change the entries in the table which are not directly supported by an observation

of the opponent. Although this does not necessarily represent the opponent’s true DFA, these entries

have no fixed value because they have yet to be observed. This approach has the benefit that it keeps

the DFA compact until an observation causes an inconsistency.

Because DFAs have no mechanism for handling non-determinism, the underlying assumption

that an opponent can be modelled as a DFA results in this technique being incapable of modelling

stochastic observations or imperfect information. Furthermore, it is not obvious how this technique

could be extended to handle these challenges or how to scale up the algorithm to large state spaces.

2.3 Imitation Learning

As with model learning algorithms, imitation learning attempts to build a model of another agent’s

behaviour from observations of the agent. Unlike a general model learning agent, an imitation learn-

ing agent (or imitator) assumes that it can learn how to behave from other agents in the environment.

If other agents have similar objectives, then an imitator can determine how to act by observing the

other agents and following a similar behaviour. There are several techniques that can be used to
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perform imitation learning. For example, an agent’s reward function can be learned, yielding in-

formation about the states an agent prefers. This is the approach taken by inverse reinforcement

learning (which is covered in Section 2.4). Other techniques use observations of other agents to

inform themselves about the state dynamics of the world. Price and Boutilier take this approach

in [21]. This work uses Bayesian statistics in a reinforcement learning MDP framework to improve

an agent’s knowledge of the MDP’s dynamics.

Specifically, the authors assume that the probability distribution over the MDP’s dynamics can

be factored into the product of Dirichlet distributions2. Each state s in the MDP has a corresponding

Dirichlet distribution over the possible next states s′. Because Dirichlet distributions are conju-

gate priors, the authors are able combine three Dirichlet distributions to derive the state dynamics.

These three distributions represent: the imitator’s prior belief about the dynamics, the imitator’s own

experiences of the MDP’s dynamics, and the imitator’s observations of other agents’ experiences.

An imitator using this technique chooses actions according to their value function over state-action

pairs. Then, upon observing their own state transition and the transitions of other agents, the imitator

updates the Dirichlet distribution with the observed outcomes. Finally, the imitator updates its value

function according to the new beliefs about the dynamics and the imitator chooses its next action.

Although this work does solve some of the four agent modelling challenges, it does not present

a formulation for imitation learning when the other agents are only partially observable. Price and

Boutilier do mention that it can be extended to solve this problem but they state it is considerably

more complex. Furthermore, it fails to address the case when the behaviour of other agents is

dynamic (which will be discussed further in Section 2.6).

2.4 Inverse Reinforcement Learning

The inverse reinforcement learning (IRL) problem aims to extract an agent’s reward function R

from the agent’s policy π or samples thereof. Knowing an agent’s reward function would reveal

what outcomes they prefer. Moreover, if we can extract an agent’s reward function, then it can be

used to generate a new agent that would imitate the agent’s behaviour. Ng and Russell present linear

programming techniques for solving the IRL problem [19].

In the case where the MDP is known except for the reward function (i.e. we know the sets of

states and actions, the state transition probabilities, and the discount factor), the authors derive the

linear constraints necessary for R to be the reward function for the MDP’s optimal policy. They also

provide linear penalty terms that elicit reward functions which are both “meaningful” (i.e. R 6= 0)

and “simple” (i.e. R is non-zero in only a few states).

The authors also extend their linear programming technique to solve the IRL problem in large

or infinite state spaces. They assume that the reward function can be approximated by a linear

combination of fixed basis functions (i.e. R = α1φ1(s) + · · ·+ αdφd(s)) and that they know these

2A Dirichlet distribution is the multivariate generalization of the Beta distribution presented in Section 4.3.1
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basis functions. Using this information, the authors can create a linear program to fit the reward

function’s coefficients. Unlike their first approach, the large (and potentially infinite) state space

prevents all possible constraints of the MDP from being included in this solution (since there would

be constraints for each state of the MDP). Therefore, the solution only satisfies the constraints on

a set of samples from the state space rather than the full state space. Finally, the reward function

for the MDP’s optimal policy may not be expressible as a linear function. To solve this problem,

additional penalty terms are added to the linear program that relax the optimality constraint while

ensuring that R remains near-optimal.

A more realistic case where we would want to solve the IRL problem is when we only know

about a policy from sample trajectories through the MDP. For this case, the authors iteratively refine

R by sampling trajectories through the MDP. As before, it is assumed that R can be expressed as a

linear function of known fixed basis functions. Specifically, on iteration k of the algorithm, sample

trajectories are computed for π∗ (the assumed optimal policy) and each policy in {π1, . . . , πk} (on

the first iteration π1 is randomly chosen). The samples for each policy are used to compute V̂ π
i (s0):

the average empirical return assuming that R = φi. Using these values, the authors estimate each

policy’s expected return V π(s0) as V̂ π(s0) = α1V̂
π
1 (s0) + · · · + αdV̂

π
d (s0). The authors then

formulate a linear program that maximizes the difference between the estimates for π∗ and πi by

adjusting the reward function coefficients α1, . . . , αd. Once this is done, a new policy πk+1 is

generated that maximizes V π(s0) under the new R. πk+1 is then added to the current set of policies

{π1, . . . , πk} and the process repeats until we find an R that we are “satisfied” with.

In general, these techniques assume that many aspects of the agent being modelled are known.

For general agents, it is unreasonable to expect that we would know an agent’s transition probabili-

ties. Moreover, it is not obvious that sample trajectories of an agent’s policy could be generated or

that we would have correct basis functions for an agent’s reward function. Even if these basis func-

tions were available, if an agent’s state was only partially observable, the modelling agent would not

be able to compute the agent’s expected return as easily. Marginalizing over the unknown param-

eters could resolve the partial observability problem, but we see no obvious solution to having an

incorrect set of basis functions. We now turn our attention to our experimental domain of poker and

the agent modelling techniques that have been used in that domain.

2.5 Poker Research

In recent years the interest in poker and poker research has increased dramatically. From a scientific

standpoint, poker provides an interesting and challenging testbed for AI research [4] that embodies

all four agent modelling challenges. The environment and often the players are stochastic. Each

player has private information which may never be revealed. Finally, dynamic behavior is an inte-

gral part of human players and expert poker tactics. For example, human players will adapt their

behaviour over time as they model their opponents and learn their own weaknesses. Also, mislead-
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ing other players by projecting a false style of play can create a “table image” that can exploited by

“switching gears” to a strategy contrary to the “table image”. This is a common tactic and involves

drastic style changes.

Agent modelling is expected to play a key role in the eventual development of world champion

poker-playing programs. Currently, many of the competitive poker playing programs employ a

game-theoretic pseudo-equilibrium approach without any agent modelling [3, 10]. By failing to

identify and exploit their opponents’ weaknesses, these approaches are unlikely to best the world’s

top human players. This was also the observation of a world class player after evaluating one of these

game theoretic programs, “You have a very strong program. Once you add opponent modelling

to it, it will kill everyone” [5]. Although equilibrium techniques can be challenging for humans,

their static nature allows human players to probe the program for weaknesses without the threat

of an adapting opponent. Poker’s inherent challenges and the expected need for agent modelling

techniques to create a world champion poker-playing program make this domain ideal for examining

the problem of dynamic agent modelling.

The University of Alberta Computer Poker Research Group (CPRG) has done extensive research

on techniques for building computer poker agents. Most of this research has focussed on Texas

Hold’em poker – a variant of poker that is much more complex than Kuhn poker. We will first discuss

some of the previous approaches to agent modelling in Texas Hold’em poker and then discuss our

experimental domain of Kuhn poker.

Loki & Poki

The CPRG’s early agent modelling techniques use a frequentist model of past behaviour to infer

an agent’s future actions and possible hidden cards. Their first opponent modelling efforts were

seen in Loki, a program for multiplayer Texas Hold’em. Loki learned an agent model by updating

separate frequency tables of 36 different game contexts based on each opponent’s observed play [6].

There was a context for each combination of actions (fold, call, raise), action cost (zero, one, or

more than one), and betting round (pre-flop, flop, turn, river). This information was used to infer

the mean and variance of an opponent’s expected hand strength3 in the specific game context. The

mean and variance values were used to reweight the distribution over the opponent’s hidden cards.

This enabled the modeller to more accurately infer its odds of winning the hand.

Loki was later refined and renamed Poki. The refinements to Loki’s opponent modelling sys-

tem were based on the use of artificial neural networks (ANNs) to predict an opponent’s future

actions [9]. In this work, an ANN was trained offline from logs of human play. The ANN used

properties of the game context for inputs and a node for fold, call, and raise in the output. Unfortu-

nately, this technique was too slow for online learning. Instead of using the ANN online, the weights

of the ANN input features were used to determine which game contexts were important factors for

3Expected hand strength is a metric of the quality of a player’s cards.
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determining an opponents actions. This yielded two new contexts that were incorporated into Loki’s

frequency tables: previous action and previous amount to call.

Vexbot & BRPlayer

Subsequent opponent modelling efforts in heads-up (i.e. two player) Texas Hold’em also used fre-

quentist opponent models, except with considerably more contexts. The CPRG’s foremost opponent

modelling program, Vexbot, and its successor BRPlayer, both use a frequentist opponent model to

drive an imperfect information game tree search.

Vexbot [5] and BRPlayer [22] search the imperfect information game tree using the miximix

algorithm. Miximix is an extension of the expectimax algorithm for stochastic game tree search to

imperfect information domains. Miximix computes the expected value (EV) of decision nodes in the

game tree by treating an opponent’s unknown information as a chance node. To compute a decision

node’s EV, miximix must know two things: the probability of the opponent’s actions at each of its

decision nodes, and the EV of the game tree’s terminal nodes.

Of course, this kind of detailed information about our opponent is unknown. Instead, Vexbot and

BRPlayer estimate these values by learning similar opponent models. The opponent model is learned

by tracking two distinct statistics for estimating these values. First, to estimate the opponent’s action

probabilities, the model stores the frequency of an opponent’s actions at each of the possible betting

histories (i.e. at each of the decision nodes in the game tree). Note that in these models the betting

histories are not conditioned on any chance events (including publicly known cards).

Next, we need to estimate the EV of a terminal node. Two separate cases are considered for

this computation. If the terminal node is due to a player folding their hand, then the EV of that

node can be computed exactly from the betting history that led to the node. Otherwise, the players

have a showdown and the the player with the strongest hand wins the money that was bet (i.e. the

pot). To compute the EV of a showdown, the opponent model needs to estimate the probability

of winning the hand. Therefore, the modelling agent must be able to estimate the probability that

the opponent’s hidden cards are stronger than its own. One might consider using a list to store a

measure of the opponent’s hand quality (e.g. expected hand strength) for each time the opponent

was observed at each showdown node. Rather that storing these lists, the opponent’s hand quality is

abstracted into discrete groups called buckets. A histogram of observed opponent buckets is stored

at each showdown node.

To accommodate an opponent’s dynamic behaviour, Vexbot gives preference to more recent

observations by gradually “forgetting” old observations. This is done by weighting the history of

observations according to an exponential decay function. Although this decay function was not

included in BRPlayer, it could be easily added. Letting h be the history decay factor, Vexbot gives

the most recent observation a weight of (1 − h), the previous 1/(1 − h) observations a weight of

(1− 1/e), and so on.
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On each hand, the opponent model’s frequency counts are updated based on the observed out-

come. When the miximix search is computing a decision for the modelling agent, the probabilities

needed by miximix are derived from the relative frequency of the observed outcomes. The main dif-

ference between Vexbot and BRPlayer lies in this derivation. In order to learn faster, both Vexbot and

BRPlayer combine showdown observations from different betting histories by weighting the related

observations according to several similarity metrics. BRPlayer considers more of these similarity

metrics than Vexbot does. After the expected value of a decision node is computed, the resulting EV

is used to determine the next action. In the case where miximax is used (a special case of miximix

that chooses the action that maximizes EV) this will result in a deterministic action. Miximix, on

the other hand, yields less predictable strategies by returning a probability distribution over possible

actions weighted by their EVs.

Although these techniques are able to handle stochastic observations, imperfect information, and

dynamic behaviour, they require a considerable amount of data to be effective. In experiments with

BRPlayer modelling the CPRG’s static pseudo-equilibrium player, PsOpti4, BRPlayer took between

20,000 to 175,000 hands before it was able to break even. It is unreasonable to expect that a human

player would ever play this long.

Another vulnerability with these techniques is that the opponent model can be easily mislead.

Because the showdown EV calculations are based solely on what the modelling agent has observed,

it can fail to account for the rules of the game. Consider an opponent who gets a lucky streak of

cards and they repeatedly play to a showdown. The opponent model would grow to believe that the

opponent both never folds and always has good cards at a showdown. This situation could result in

a “folding trap” where the model believes it is always best to fold since my opponent only goes to

the showdown and always has good cards. Of course, the opponent cannot always have good cards

due to the random nature of the deck. Unfortunately, Vexbot and BRPlayer are not aware of this.

Bayes’ Bluff

The CPRG’s most recent approach to modelling opponents in heads-up Texas Hold’em combines

Bayesian techniques and Monte Carlo sampling to infer an opponent’s current strategy [23].

This work, named Bayes’ Bluff, made three contributions to modelling agents with Bayesian

inference in games similar to Texas Hold’em. First, the authors demonstrated how to compute the

probability of an individual observation given the opponent’s strategy regardless of whether the

opponent’s hidden cards are revealed at a showdown. This derivation was necessary for their second

contribution which showed how to compute the posterior distribution over opponent strategies given

a set of past observations. Finally, the authors show that an algorithm similar to expectimax will

compute the Bayesian best response to the posterior distribution over opponent strategies.

Unfortunately, computing the exact Bayesian best response to the posterior requires the evalua-

tion of an integral over opponent strategies. This is prohibitively expensive except in small games
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with relatively few observations. To circumvent this problem, the authors present three sampling

techniques to approximate the exact Bayesian best response. First, the integral itself could be ap-

proximated by sampling the prior over opponent strategies. Second, the maximum a posteriori

(MAP) response could be computed instead of the Bayesian best response. This is also compu-

tationally expensive, but it can also be approximated by sampling the prior and using the strategy

that is most probable as the MAP strategy of the opponent. Finally, Thompson’s response can be

used. This technique samples the prior distribution and uses importance sampling (covered in Sec-

tion 3.2.2) to compute each sample’s posterior probability. A strategy is then chosen from the set of

samples based on their posterior probability.

The techniques that we present in this thesis are very related to some of the techniques used in

Bayes’ Bluff. Both approaches use Bayesian inference, with Monte Carlo sampling. In fact, our

technique is analogous to Bayes’ Bluff when using samples to estimate the integral over opponent

strategies. The key difference between the two approaches is that Bayes’ Bluff assumes an opponent

is static, never changing their strategy throughout the game. Our work, on the other hand, explicitly

models dynamic agents.

2.5.1 Kuhn Poker

We will now focus on our experimental domain of Kuhn poker. Kuhn poker is a toy variant of poker

developed by Dr. Harold Kuhn. It is a zero-sum game involving two players; two actions, bet and

pass; and a three card deck, containing a jack (J), queen (Q) and king (K). Each player is dealt one

card privately and the third card is set aside unseen. The first player may then either bet or pass. If

the first player bets the second player may either bet, causing a showdown, or pass, to fold. If the

first player passes, the second player can also pass, causing a showdown, or bet, forcing the first

player to make a final decision of either bet, for a showdown, or pass, for a fold. In the case of a

fold, the non-folding player wins one dollar from the folding player. In the case of a showdown, the

player with the higher card (king is high, jack is low) wins one dollar if neither bet, or two dollars if

both players bet.

Kuhn poker’s small size and diverse strategies make it an ideal domain for our investigation. It

preserves many strategic properties found in larger variations of poker played by humans, yet a game

theoretic analysis of the game is tractable and exists [16]. For instance, two common poker tactics

are trapping (i.e. acting as though your hand is weaker than it truly is) and bluffing (i.e. acting as

though your hand is stronger than it truly is). Kuhn poker preserves both of these properties. Betting

with a jack represents a bluff while passing with a king is a trap. In addition to preserving strategic

properties, Kuhn poker also has a known parameterization for players’ strategies, and computing

the best-response to a given strategy is straightforward. Since these features are all active research

directions in full versions of poker, Kuhn poker offers a clean domain for evaluating ideas. Moreover,

as we discuss next, it has already been a testbed for agent modelling research.
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Hoehn and colleagues [12, 13] have recently worked on agent modelling techniques for short-

term modelling of static opponents in Kuhn poker4. Hoehn examined a variety of different agent

modelling techniques including explicit modelling using frequentist statistics and implicit modelling

using experts algorithms. We present his approaches here and compare the performance of our

technique with Hoehn’s in Section 5.1.

Explicit Modelling

Like the aforementioned model learning algorithms, Hoehn’s explicit modelling technique attempts

to learn the parameters of an agent model from observations. In this case, the parameters represent

an opponent’s strategy in Kuhn poker.

In many regards, Hoehn’s explicit modelling is similar to the approach taken with Vexbot and

BRPlayer. Both techniques use frequency counts to estimate an opponent’s action probabilities. Un-

like Vexbot and BRPlayer, which store frequency counts for observed betting strings and abstracted

showdown outcomes, Kuhn’s small size allows Hoehn to store frequency counts for all possible

observations of the betting history and chance events (from the modelling player’s perspective).

Hoehn also derives closed form equations for estimating the frequency counts of observations

where the opponent’s cards are unknown. These estimations take into account the observation fre-

quencies, the probability of the random cards, and the modeller’s own strategy. This gives Hoehn’s

explicit modelling one distinct advantage over Vexbot and BRPlayer: it knows about the rules of the

game. From the combined information provided by the frequency counts and the frequency count

estimations, Hoehn is able to estimate all of the parameters of an opponent’s strategy.

To build a functional computer agent using this agent model, Hoehn uses his parameter esti-

mation technique together with a variety of exploration strategies and a best response computation

identical to the one we present in Section 4.4.

Although this technique does allow for the rules of chance events to be integrated into the agent

model, the technique would be very difficult to scale to a game like Texas Hold’em poker.

Implicit Modelling

In contrast to explicit modelling, Hoehn’s implicit modelling does not attempt to directly learn

the parameters of an opponent’s strategy and then compute a counter-strategy. Instead, implicit

modelling attempts to identify a good counter-strategy to the opponent while being unaware of the

opponent’s specific weaknesses or vulnerabilities.

This is done through the use of the regret minimization techniques presented by Auer and col-

leagues [1]. Regret minimization algorithms present a technique for combining the advice of a set

of experts. The foundation of regret minimization lies in two algorithms: Hedge and Exp3. We will

discuss each of these algorithms next.

4Technically Hoehn’s work is done in the domain of undominated Kuhn poker, which we discuss further in Section 4.1
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The Hedge algorithm requires a set of experts and a reward associated with each expert. At time

step t of the Hedge algorithm, expert i with cumulative reward Gi(t−1) over the last t−1 time steps

is chosen from the set of K experts with probability pi(t) = exp(ηGi(t− 1))/
∑K

j=1 exp(ηGj(t−

1)). η is a parameter to Hedge that controls the learning rate (i.e. the emphasis given to using an

expert with largest cumulative reward). The chosen expert would then be used to make decisions on

time step t. Hedge was designed as a regret minimization technique for games where it was possible

to determine the reward that each expert would have received if they were chosen at a given time

step. It is also central to other experts algorithms, such as Exp3, which are designed to handle the

case when it is not known what reward the other experts would have received.

Exp3 handles the case when an expert’s reward is unknown by generating simulated rewards for

the experts. Simulating rewards effectively reduces this case to the full information situation that

Hedge was designed for. The Exp3 algorithm, which stands for Exponential-weight algorithm for

Exploration and Exploitation, does as its name suggests. First it invokes Hedge to get the exponen-

tially weighted probabilities pi(t) of choosing expert i for exploitation on the current time step t.

Then, it modifies the probabilities by adding in a specified amount of uniform exploration, γ. Expert

i is chosen according to the resulting probability p̂i(t) = (1 − γ)pi(t) + γ/K. This expert is then

used to make decisions and a reward ri(t) is received. To give Hedge full information, Exp3 gener-

ates simulated rewards of r̂j(t) = 0 for j 6= i, and r̂i(t) = ri(t)/p̂i(t) for the chosen expert. Scaling

the observed reward in this manner compensates experts that are chosen infrequently. Formally, it

ensures that the expected value of an expert’s simulated cumulative reward after T time steps is

equal to their cumulative reward with full information (i.e. E[
∑T

t=1 r̂j(t)] =
∑T

t=1 rj(t)). Exp3 is

an easily implemented algorithm that has useful theoretical guarantees for performance. Moreover,

Exp3’s basic framework provides the foundation for more sophisticated experts algorithms, such as

Exp4, that generate simulated rewards which are more representative of the true rewards.

Hoehn’s work presents and examines the effectiveness of several such improved experts algo-

rithms along with Exp3 [12]. In general, Exp3 can be modified to learn more quickly by sharing

rewards between experts. When expert j has a non-zero probability of acting in the same way as the

chosen expert i, expert j had some probability of obtaining the same reward as expert i. In this case,

the reward received by expert i is scaled by the probability that any of the experts would have made

the same decisions as i. Each of the agreeing experts is given a share of the rewards proportional

to their contribution to the overall probability of making the decisions taken by the chosen expert.

This style of reward sharing has been investigated by Auer and colleagues [1] as the Exp4 algorithm.

Hoehn’s SharingExp3 algorithm also uses this approach and has been shown to yield better results

for modelling agents in Kuhn poker.

Using regret minimization techniques for implicit modelling has both advantages and disadvan-

tages. Because the algorithms only consider the reward received by the chosen expert, the opponent’s

hidden cards do not need to be directly accounted for by the algorithm. Furthermore, aside from us-
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ing the outcomes of chance events to determine the probability of another expert making the same

decisions as our chosen expert, the implicit modelling techniques do not need to know about the

stochastic observations. This makes regret minimization algorithms an enticing approach to agent

modelling that provides theoretical guarantees on performance. Unfortunately these implicit mod-

elling techniques also have the drawback of being relatively slow to learn. Sharing rewards between

experts mitigates this to some degree, but as Hoehn’s experiments indicate, none of his implicit

modelling techniques fared as well as his explicit modelling algorithm.

Despite some weaknesses, Exp3 is a relatively simple algorithm for modelling dynamic oppo-

nents. Because of this, we revisit Exp3 in Section 5.3 where we use this algorithm as an example

of a non-oblivious opponent. We will now conclude this chapter with a discussion on the different

agent modelling techniques for modelling dynamic agents.

2.6 Modelling Agent Behaviour Dynamics

One significant difference between our work and previous work is how we handle an agent’s dy-

namics. Although some of the techniques just described are capable of modelling dynamic agents,

the assumptions that are made about the dynamics can be very restrictive. To clarify the differences

in how dynamic agent modelling is addressed by other techniques and our own, we will discuss

the dynamic agent modelling capabilities of each of the aforementioned approaches. We will then

introduce the strengths and limitations of our own technique before moving on to its description.

Much of the previously described work on agent modelling makes the assumption that an agent’s

behaviour is static in some way. The behaviour HMMs presented by Han and Veloso [11] assume

that the agent does not switch between behaviours part way through recognition. Abstract HMMs [7]

only consider one top-level policy at a time and are unable to model interleaved plans. Price and

Boutilier’s imitation learning algorithm [21] explicitly assumes that the behaviour of the agent being

modelled is static. The same is true for Ng and Russell’s inverse reinforcement learning work [19].

All of these techniques can model behaviours that are, in a sense, dynamic. Specifically, they can

recognize behaviours that involve a sequence of distinct actions. Consider the example presented by

Bui and colleagues of a person navigating through a building to an exit. This agent is “dynamic”

because the behaviour of “exit through the east door” may consist of different sub-behaviours like

“enter the hallway”, “go down the stairs”, and “enter the east lobby”. This is not the type of be-

haviour dynamics that we are interested in. We are interested in behaviour dynamics that allow for

an agent to switch between multiple behaviours that can take entirely different actions despite being

in the same situation. Returning to our example, consider that the person typically leaves through

the east exit but occasionally leaves with a friend from the west exit. Moreover, they are a little

forgetful and often walk to the east lobby before realizing they need to head to the west door. It is in

these situations, where an agent may change their high level behaviour according to some unknown

process, that we want to be able to model an agent and their dynamics effectively.
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Some of the previous work handles this type of dynamics but with some specific assumptions

about how the unknown dynamics process works. Carmel and Markovitch’s opponent modelling

work [8] can represent dynamics agents, but only if their behaviours dynamics can also be mod-

elled as a DFA. Realistically, this type of dynamic behaviour is not any different from the previous

“dynamics” because the larger DFA could be considered as a single, albeit more complex, behaviour.

Frequency count approaches to opponent modelling in poker (Loki, Poki, Vexbot, BRPlayer,

and Hoehn’s explicit modelling) provide a straightforward technique for modelling static agents. Al-

though these algorithms could be extended to address dynamic opponents by decaying the frequency

counts over time, as was done with Vexbot, this amounts to “forgetting” an agent’s past behaviour

in the hope that they will behave similarly to recent actions. If an agent’s future behaviour is highly

dependent on their past behaviour, this type of information decay will discard valuable information.

In our example of a person leaving a building, we might be able to infer that if the person is heading

for the east exit and they stop, then they are more likely to be heading to the west exit. But, if we

are decaying information, this pattern may never be revealed.

Regret minimization algorithms, such as Hoehn’s implicit modelling algorithms [12], can be

used to model dynamic agents. Unfortunately, they only adapt to a change in an agent’s behaviour

through the rewards they receive. Without specific mechanisms to learn the parameters of an agent’s

dynamics, they are only able to adapt in reaction to an agent’s behaviour rather than active prediction

of an agent’s next behaviour.

Our work provides mechanisms to explicitly model an agent’s dynamic behaviour. This is, in

many ways, an extension of the ideas from Bayes’ Bluff to handle dynamic opponents. Along with

the parameters of an agent’s behaviour (which is a strategy in Kuhn poker) we store additional

parameters for describing an agent’s dynamics. On their own, these parameters can be used to

describe how an agent’s behaviour changes. We also provide a technique for dual estimation that

allows us to estimate these parameters as we observe our opponent’s behaviour.

Although our technique provides a method for modelling dynamic behaviour, there are still

limitations on the type of behaviour dynamics that we can model. As is described in Chapter 4,

our technique uses two parameters that describe an agent’s behaviour dynamics. Our choice of

state variables and dynamics models restricts our agent to modelling changes in behaviour that are

only dependent on the previous behaviour (i.e. we assume the dynamics are Markovian). Our tech-

nique does not require Markovian dynamics in general, but the computational cost of modelling

non-Markovian dynamics grows rapidly with the number of previous time steps modelled by our al-

gorithm5. Despite this limitation, we will show that our state estimation techniques provide effective

and robust modelling of dynamic agents in the domain of Kuhn poker.

5The agent’s state in each previous time step would need to be tracked to model non-Markovian dynamics. The number
of particles required by our state estimation algorithms to cover (and therefore accurately estimate) the state space grows
exponentially with the size of the state space.
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Chapter 3

Background

Describing our application of state estimation to Kuhn poker requires some preliminary knowledge

in game theory and state estimation algorithms. We begin by presenting the essential game theory

knowledge used by our work in Section 3.1. We conclude our background content with an introduc-

tion to state estimation algorithms in Section 3.2.

3.1 Game Theory

Game theory is a branch of mathematics that studies strategic interactions between agents. The the-

oretical basis of game theory provides a useful framework for our exposition. Although we present

some key ideas of game theory, this discussion only presents the concepts needed for our application

of state estimation to Kuhn poker. The formalism for this section is inspired by Owen [20]. For a

more complete treatment of game theory, see this or any other game theory text.

In general, a game refers to a process where two or more agents, called players, are given re-

wards based on making alternating decisions using whatever information is available to them (which

may be imperfect). To accommodate for random events (e.g. random cards), games may also include

an agent that makes stochastic moves.

More precisely, players are asked to make decisions at information sets corresponding to the

information observed by the player. An information set Ip for player p corresponds to the set of

all possible decision nodes where player p has the same public and private information. In a perfect

information game, each information set is distinct. For imperfect information games, multiple deci-

sion nodes can correspond to a single information set. For example, in Kuhn poker, each possible

information set for player one’s first decision contains two decision nodes: one for each possible

unknown card that the opponent may hold.

Using this concept of information sets, we can now define a player’s strategy. A player’s strategy

defines how they play the game. A strategy σp ∈ Σp, where Σp is the set of all strategies available

to player p, is a function that maps information sets to a distribution over the actions available to

player p. Behavioural strategies have no constraints on the form of the action distributions. Pure
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strategies, on the other hand, have action distributions that put all of the probability mass on a single

action for every information set (i.e. a deterministic strategy).

Agents receive rewards at the end of a game based on the strategies they choose. We denote

the amount of reward given to player p for reaching terminal node τ of the game tree as Vp(τ).

The expected reward (over all terminal nodes) that each strategy receives is determined by a payoff

function π(σ1, . . . , σn) = (π1(σ1, . . . , σn), . . . , πn(σ1, . . . , σn)) which returns an n-tuple of the

expected rewards for all players.

Now that we have defined some of the basic game theory terminology, we can define some more

specific properties of games and strategies.

A Nash equilibrium is an n-tuple of strategies where none of the players can increase their

payoff by only changing their own strategy. To be precise, an n-tuple of strategies (σ∗
1 , . . . , σ∗

n) is

a Nash equilibrium, if and only if, πp(σ∗
1 , . . . , σ∗

p−1, σp, σ
∗
p+1, . . . , σ

∗
n) ≤ πp(σ∗

1 , . . . , σ∗
n) for all

possible strategies σp of every player p. The payoff value of the equilibrium πp(σ∗
1 , . . . , σ∗

n) is often

called the value of the equilibrium.

One class of games that has some interesting properties is two-player zero-sum games. In a

two-player zero-sum game there are only two players and the sum of their rewards is zero, that is,

π1(σ1, σ2) = −π2(σ1, σ2). A minimax optimal strategy (usually just called an optimal strategy) in

a two-player zero-sum game is a strategy that maximizes a player’s guaranteed minimum expected

reward under any possible opponent strategy. For two-player zero-sum games, Nash equilibria are

optimal for both players because using a strategy that does not obtain the equilibrium value leaves

the player vulnerable to exploitation by some strategy of the opponent. Moreover, if (σ∗
1 , σ∗

2) and

(σ̂∗
1 , σ̂∗

2) are both equilibria, then so is (σ∗
1 , σ̂∗

2) and (σ̂∗
1 , σ∗

2). Note that, in general, an optimal

strategy does not necessarily maximize rewards.

A dominated strategy σ∗
p for player p is a strategy such that p has another strategy σp whose

expected payoff is at least as much as σ∗
p against every possible opponent strategy and greater than

σ∗
p for at least one possible opponent strategy. More specifically, σ∗

p is dominated if there exists

σp such that πp(σ1, . . . , σp−1, σ
∗
p, σp+1, . . . , σn) ≤ πp(σ1, . . . , σn) for all σi where i 6= p and

πp(σ1, . . . , σp−1, σ
∗
p, σp+1, . . . , σn) < πp(σ1, . . . , σn) for at least one choice of σi’s where i 6= p.

Although there are Nash equilibrium solutions to many games, including Kuhn poker, our agent

modelling work aims to maximize our rewards by learning an opponent’s strategy and exploiting its

weaknesses. To do this, we use the state estimation algorithms presented in the next section.

3.2 State Estimation

State estimation refers to the problem of determining the current state of a system given a sequence

of our actions and a sequence of observations of the system. Formally, we represent the true state1

at time t as the vector xt. Similarly, let zt and ut denote vectors for the observation and action, re-

1Note that this is the true state of our chosen state parameters. This does not necessarily include all of a system’s variables.
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spectively, at time t. Define x1:t to be the state sequence x1, . . . , xt and similarly for the observation

sequence z1:t and action sequence u1:t. Then the state estimation problem is concerned with estimat-

ing the random variable xt|(z1:t, u1:t), or rather the complete posterior distribution Pr(xt|z1:t, u1:t).

Our presentation of state estimation algorithms begins with a description of Bayesian filters, fol-

lowed by two specific Bayesian filtering algorithms: particle filters and Rao-Blackwellized particle

filters. Note that much of the formalism presented in this section mirrors that of Thrun, Burgard,

and Fox [25].

3.2.1 Bayesian Filtering

A common approach to state estimation is to represent the uncertainty in the current state as a

probability distribution and use Bayes’ rule to update the belief after every action/observation pair.

This technique is called Bayesian filtering. By applying Bayes’ rule and assuming that xt is a

sufficient statistic for the observations and actions up to time t (i.e. the Markov assumption), we

arrive at the standard recursive Bayesian filtering equation.

Pr(xt|z1:t, u1:t) =
Pr(zt|xt, z1:t−1, u1:t) Pr(xt|z1:t−1, u1:t)

Pr(zt|z1:t−1, u1:t)
(3.1)

= η Pr(zt|xt, z1:t−1, u1:t) Pr(xt|z1:t−1, u1:t) (3.2)

= η Pr(zt|xt) Pr(xt|z1:t−1, u1:t) (3.3)

= η Pr(zt|xt)
∫

Pr(xt|xt−1, z1:t−1, u1:t) Pr(xt−1|z1:t−1, u1:t)dxt−1(3.4)

= η Pr(zt|xt)
∫

Pr(xt|xt−1, ut) Pr(xt−1|z1:t−1, u1:t−1)dxt−1 (3.5)

where η is the denominator in Equation 3.1, i.e., the normalization constant. Equation 3.1 is de-

rived by applying Bayes’ rule. Equation 3.3 and Equation 3.5 follow from the Markov assump-

tion. Marginalization over xt−1 yields Equation 3.4. Given our previous belief, bel(xt−1) ≡

Pr(xt−1|z1:t−1, u1:t−1), we can use Equation 3.5 to find our new belief after the latest action and

observation. Algorithm 1 provides pseudocode for the update.

Algorithm 1 Bayesian Filter
Require: bel(xt−1), ut, zt

for all xt do
bel(xt) =

∫
Pr(xt|ut, xt−1)bel(xt−1)dxt−1

bel(xt) = η Pr(zt|xt)bel(xt)
Return bel(xt)

The algorithm requires an observation model Pr(zt|xt), a motion model Pr(xt|ut, xt−1), and

an initial belief or prior Pr(x0). For a practical implementation, the form of the belief distribution

bel(xt), the motion model, and the observation model all need to allow the integral in the Bayesian

filtering equation to be computed easily. For example, using a Gaussian form for these distributions

results in one of the Kalman filter variants. A Monte Carlo approximation results in a particle filter,

which is the approach taken in this thesis.
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3.2.2 Particle Filtering

A particle filter is a Bayesian filter that uses Monte Carlo methods with importance sampling. Par-

ticle filters approximate the probability distribution over the state using a set of samples called par-

ticles. Each particle is a state vector denoted as x
(i)
t . Updating a particle filter relies on importance

sampling. To explain particle filters, we will first cover the basic idea behind importance sampling

before elaborating on the implementation details of particle filtering.

Importance Sampling

Importance sampling is a general technique to estimate E[f(Q)] without having to actually sample

from Q ∼ Pr(Q = q). If we want an unbiased way to estimate E[f(Q)], but we can only sample

from another distribution Q̃ ∼ Pr(Q̃ = q) (referred to as a proposal distribution), then just sample

from Q̃ and reweight each sample by the importance weight w(q). This technique works because

for any function f applied to Q we notice the following:

E[f(Q)] =
∫

q

f(q) Pr(Q = q)dq

=
∫

q

f(q) Pr(Q = q)
Pr(Q̃ = q)
Pr(Q̃ = q)

dq

=
∫

q

f(q) Pr(Q̃ = q)w(q)dq where w(q) =
Pr(Q = q)
Pr(Q̃ = q)

= E[g(Q̃)] where g(q) = w(q)f(q)

Therefore sampling from Q̃, with the importance weights w(q), will have the same expectation as

sampling from Q.

Implementation

We now describe the implementation of particle filtering and how the algorithm uses importance

sampling. Returning to our Bayesian filtering problem, we want to sample xt ∼ Pr(xt|z1:t, u1:t).

It is not currently known how to directly sample this distribution. Instead of sampling it directly we

will use importance sampling. Let Pr(Q = q) ≡ Pr(xt|z1:t, u1:t) = η Pr(zt|xt) Pr(xt|z1:t−1, u1:t)

(by Equation 3.3). Now we need an appropriate proposal distribution, Pr(Q̃ = q). Both Pr(zt|xt)

and Pr(xt|z1:t−1, u1:t) could be used since using one for the proposal distribution results in the

other being used as the importance weight. In most particle filter applications the observation model

Pr(zt|xt) is used for importance weights and the proposal distribution comes from the motion model

Pr(xt|z1:t−1, u1:t) and the belief distribution Pr(xt−1|z1:t−1, u1:t−1). That being said, Thrun and

colleagues have shown that using the observation model as the proposal distribution and the motion

model and belief distribution for importance weights (a technique they call dual Monte Carlo local-

ization) is also a viable approach despite some challenges in implementation [26]. Moreover, they

present a technique to combine both standard and dual Monte Carlo localization in their mixture

Monte Carlo localization algorithm. We use the first (standard) approach in this work.
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Now that samples can be drawn from our desired distribution we can apply Monte Carlo meth-

ods. If we have a particle x
(i)
t−1 approximately sampled from Pr(xt−1|z1:t−1, u1:t−1) we want a new

particle x
(i)
t approximately sampled from Pr(xt|z1:t, u1:t). We do this by sampling x̃

(i)
t from the

(motion model) proposal distribution Pr(xt|ut, x
(i)
t−1) and weighting it by the (observation model)

importance sampling correction Pr(zt|x̃(i)
t ).

The final stage of particle filtering is resampling. Resampling is used to avoid degeneracy in the

Monte Carlo sampling approximation where most of the particles begin to have (near) zero prob-

ability. In general, resampling randomly selects n particles from the previous set of Monte Carlo

samples. There are numerous resampling algorithms, each with different computational costs, ben-

efits (e.g. lower variance), and disadvantages (e.g. bias). Some examples of resampling algorithms

include low variance sampling and stratified sampling [25]. The most straightforward resampling

algorithm is to simply draw the n particles, with replacement, from the previous set, with proba-

bility proportional to their importance weighting. This resampling algorithm is the one we used in

our experiments. Resampling has the benefit of focusing the limited number of particles in areas

of higher probability. This allows the algorithm to discard unlikely particles for ones that are more

“interesting”. The full particle filtering algorithm can be seen in Algorithm 2.

Algorithm 2 Particle Filter
Require: A set of weighted particles Xt−1

Require: Action ut and observation zt

Xt = Xt = ∅
for i = 1 to |Xt−1| do

sample x
(i)
t ∼ Pr(xt|ut, x

(i)
t−1)

w
(i)
t = Pr(zt|x(i)

t )
Xt = Xt ∪ {〈x(i)

t , w
(i)
t 〉}

for i = 1 to |Xt−1| do
add x

(i)
t to Xt with probability ∝ w

(i)
t

Return Xt

Monte Carlo methods give particle filters considerable power and flexibility. They can handle

non-linear dynamics while representing arbitrary belief distributions over the state variables. This

is in contrast to many other Bayesian filtering algorithms, such as the Kalman filter variants, that

are only capable of representing Gaussian probability distributions. Particle filters have one major

drawback – they can be expensive. A particle filter’s accuracy and computational cost scales with the

number of particles used. Unfortunately, the number of particles needed to cover an n-dimensional

state space is exponential in n. On the bright side, the number of particles to use is a simple pa-

rameter to manipulate. This means that the accuracy of a particle filter can easily scale as computer

hardware improves.
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Figure 3.1: Graphical model of a dynamic agent’s state

3.2.3 Rao-Blackwellized Particle Filtering

Rao-Blackwellized particle filters (RBPFs) are a hybrid Bayesian filtering technique that extend

standard particle filters. More precisely, RBPFs are useful for estimating E[f(X)] when X can

be factored into a joint product of two sets of variables: one set X ′ that must be sampled, and

another set X ′′ whose expectation can be integrated out analytically given X ′. As one might guess,

particle filters can be used to estimate X ′. This hybrid inference, estimating both analytically and

by sampling, is similar in many regards to standard particle filters. Like particle filters, RBPFs can

handle non-linear dynamics and arbitrary belief distributions. Beliefs are still represented with a set

of particles. The key difference lies in being able to factor X and analytically estimate X ′′.

In this work, we use RBPFs to perform dual estimation, inferring the system state and any

unknown parameters of the motion or observation models simultaneously. We consider a simple

case of dual estimation where the system’s dynamics are parameterized by some unknown value

θ, which we need to simultaneously infer along with the system state [17, 24]. Although RBPFs

can be used more generally than this, we will only derive RBPFs that infer the hidden state and the

motion model parameters as this is all that we need. Consider the general statistical process shown
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in Figure 3.1 that underlies this inference problem. The main difference between this process and

the process for the Bayesian filter derived earlier is that the hidden state now depends on the motion

model parameter θ. We begin the derivation of the RBPF posterior in much the same way as the

Bayesian filter derivation.

Pr(x1:t|z1:t, u1:t) = η Pr(zt|x1:t, z1:t−1, u1:t) Pr(x1:t|z1:t−1, u1:t) (3.6)

= η Pr(zt|xt) Pr(x1:t|z1:t−1, u1:t) (3.7)

= η Pr(zt|xt)
∫

x1:t−1

Pr(x1:t−1|z1:t−1, u1:t−1)

Pr(xt|x1:t−1, z1:t−1, u1:t) (3.8)

where η is a normalization constant. Equation 3.6 is derived by applying Bayes’ rule. Equation 3.7

follows from zt being conditionally independent of the other variables given xt (see Figure 3.1).

Marginalization over the chain of hidden states x1:t−1 and the fact that x1:t−1 does not depend on

ut yields Equation 3.8. Equation 3.8 still presents us with a problem since we do not know how

to compute Pr(xt|x1:t−1, z1:t−1, u1:t) due to the dependency of xt on the unknown value of θ. To

solve this problem we marginalize over θ.

Pr(x1:t|z1:t, u1:t) = η Pr(zt|xt)
∫

x1:t−1

Pr(x1:t−1|z1:t−1, u1:t−1)∫
θ

Pr(xt|x1:t−1, z1:t−1, u1:t, θ) Pr(θ|x1:t−1, z1:t−1, u1:t) (3.9)

= η Pr(zt|xt)
∫

x1:t−1

Pr(x1:t−1|z1:t−1, u1:t−1)∫
θ

Pr(xt|xt−1, ut, θ) Pr(θ|x1:t−1, z1:t−1, u1:t−1) (3.10)

Equation 3.10 follows from Equation 3.9 for two reasons. First, xt is conditionally independent of

the other variables given xt−1, ut, and θ. Second, Pr(θ|x1:t−1, z1:t−1, u1:t) is independent of ut

given x1:t−1, z1:t−1, u1:t−1. Equation 3.10 gives us an expression for our posterior distribution that

is similar to the posterior for our Bayesian filter (Equation 3.5). Like before we have a recursive

update for our belief distribution Pr(x1:t−1|z1:t−1, u1:t−1) and we require an observation model

Pr(zt|xt), and a motion model Pr(xt|xt−1, ut, θ) (which is now dependent on θ). This leaves us

with the one new term Pr(θ|x1:t−1, z1:t−1, u1:t−1) that we now consider how to compute.

Pr(θ|x1:t, z1:t, u1:t) = η Pr(xt, zt|x1:t−1, z1:t−1, u1:t, θ) Pr(θ|x1:t−1, z1:t−1, u1:t) (3.11)

= η Pr(zt|xt) Pr(xt|x1:t−1, z1:t−1, u1:t, θ)

Pr(θ|x1:t−1, z1:t−1, u1:t) (3.12)

= η′ Pr(xt|xt−1, ut, θ) Pr(θ|x1:t−1, z1:t−1, u1:t−1) (3.13)

where η is a normalization constant from Bayes’ rule. Equation 3.12 follows from the multiplica-

tion rule of conditional probabilities and the fact that zt is is independent from the other variables
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given xt. Since Pr(zt|xt) is not dependent on θ we can move it into the normalization constant

making η′ = η Pr(zt|xt). The new normalization constant combined with the observations from the

derivation of Equation 3.10 yields the recursive update shown in Equation 3.13.

If we choose a distribution for Pr(xt|xt−1, ut, θ) that has a conjugate prior, then our posterior at

time t will have the same form as the posterior at time t− 1. This means that we only need to store

and update a sufficient statistic st to compute Pr(θ|x1:t, z1:t, u1:t). More precisely, we can let

Pr(θ|x1:t, z1:t, u1:t) = Pr(θ|st) (3.14)

By using a conjugate prior, the recursive structure of Equation 3.13 enables us to compute our pos-

terior Pr(θ|x1:t, z1:t, u1:t) efficiently, incurring relatively little extra computational cost compared

to basic particle filters.

Using our derivations we can augment our particle filter algorithm (Algorithm 2) to model a

process with unknown motion model parameters. We present the augmented particle filter, which

is just a specific case of a Rao-Blackwellized particle filter, in Algorithm 3. Each particle stores

the additional sufficient statistic, s
(i)
t for Pr(θ|s(i)

t ). Sampling from the proposal distribution now

involves sampling θ̃ from Pr(θ|s(i)
t−1) and then sampling x̃

(i)
t from Pr(xt|ut, x

(i)
t−1, θ̃). The sufficient

statistic for each candidate particle is updated for the new transition s
(i)
t = UPDATE(s(i)

t−1, x
(i)
t−1 →

x̃
(i)
t ). The weighting from the observation model and resampling is performed in the usual fashion.

Algorithm 3 Rao-Blackwellized Particle Filter
Require: A set of weighted particles Xt−1

Require: Action ut and observation zt

Xt = Xt = ∅
for i = 1 to |Xt−1| do

sample θ̃ ∼ Pr(θ|s(i)
t−1)

sample x
(i)
t ∼ Pr(xt|ut, x

(i)
t−1, θ̃)

s
(i)
t = UPDATE(s(i)

t−1, x
(i)
t−1 → x

(i)
t )

w
(i)
t = Pr(zt|x(i)

t )
Xt = Xt ∪ {〈x(i)

t , s
(i)
t , w

(i)
t 〉}

for i = 1 to |Xt−1| do
add 〈x(i)

t , s
(i)
t 〉 to Xt with probability ∝ w

(i)
t

Return Xt

3.2.4 Related Applications

State Estimation algorithms have been applied in many domains to solve a diverse range of problems.

Particle filters have been used in vision systems under the guise of the condensation algorithm for

detecting and tracking the contours of moving objects [14]. In robotics, state estimation algorithms

are used extensively for robotic localization where a robot’s pose must be inferred from the robot’s

actions (movement) and observations (sensor data) [25].
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More recently, the problem of simultaneous localization and mapping (SLAM) has been exam-

ined in robotics research. The goal of SLAM, as its name suggests, is to localize a robot while

simultaneously building a map of the robot’s environment. Work by Montemerlo and colleagues

presented a new approach to SLAM, called FastSLAM, that uses RBPFs [18]. Their work assumes

that measurements of individual landmarks in the environment are conditionally independent given

the robot’s path. This allows them to factor the SLAM problem into an estimation of the sufficient

statistics (s(i)
t ) for the landmark locations and an estimation of the robot’s pose (x(i)

t ). By infer-

ring the location of 50,000 landmarks, their experiments showed that RBPFs are both effective and

efficient for solving the SLAM problem when this assumption holds.

State estimation has also been proposed for giving computer agents a more realistic belief about

opponent positions in commercial games. More precisely, Bererton proposed the use of particle

filters to track an agent’s (x, y) location in a world with several rooms [2]. A simple motion model

using a random walk is used to represent the opponent’s movements. Particles are weighted based

on two cases. If the opponent is visible a particle is weighted according to its distance from the

opponent, otherwise the agent simulates a laser range finder sweep and particles are weighted based

on their distance from a laser ray.

Although these are all interesting applications, we are interested in using state estimation for

inferring an agent’s subjective state, i.e. its behaviour, rather than an objective state like the position

of an agent or an object. The next chapter describes our application of state estimation to the problem

of inferring an agent’s strategy in the domain of Kuhn poker.
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Chapter 4

Application to Kuhn Poker

We now describe our application of state estimation techniques, specifically particle filters and Rao-

Blackwellized particle filters, to the game of Kuhn poker. First, we will discuss Kuhn poker in further

depth including a description of undominated Kuhn poker. Next, we will describe how we mapped

the structure of Kuhn poker onto Bayesian filtering, including some elaboration on our choice of

motion models. We will then describe the extra requirements for Rao-Blackwellized particle filters.

Finally, we explain how we use the opponent model when playing.

4.1 Undominated Kuhn Poker

Section 2.5.1 introduced the game of Kuhn poker: a two player zero-sum poker game where each

player is dealt a single card from a three card deck. In addition to defining the game, Kuhn also

presented a complete game theoretic analysis [16]. Although there are 64 different pure strategies

for each player, many of these are dominated. By removing all of the dominated strategies, we are

left with the game of undominated Kuhn poker. Figure 4.1 shows the game tree for undominated

Kuhn poker. For the remainder of this thesis, we will be working in the domain of undominated

Kuhn poker which we refer to as simply “Kuhn poker”. To simplify things further, we restrict

ourselves to the situation where we are player one modelling player two.

In undominated Kuhn poker, the strategy space of player one can be parameterized by three

parameters (α, β, γ), and player two by two parameters (η, ξ). These parameters are all in the

range [0, 1] and specify the probability of betting in certain information sets. For example, η is the

probability the second player bets when facing a bet while holding the queen, and ξ is the probability

the second player bets after a pass when holding the jack.

Kuhn poker has a continuum of Nash equilibria, which can be written in the aforementioned

parameterization as, α = γ/3, β = (1 + γ)/3, and η = ξ = 1/3. The value of the equilibrium is

−1/18 dollars per game. In other words, if player one plays an equilibrium strategy then they can

expect to lose at most 5.5 cents per game. Similarly, if player two plays an equilibrium strategy then

they will win at least 5.5 cents per game on average.
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Although many of the competitive poker programs currently employ Nash equilibrium approx-

imations [3, 10], greater payoffs may still be possible. Consider the following example from Kuhn

poker. Suppose player two chooses undominated actions with equal probability (i.e. η = ξ = 0.5).

If player one plays an equilibrium strategy, they can expect to lose −1/18 per game. Now suppose

player one deviates from the equilibrium and responds by passing in the first round and betting with

a king or queen when bet to (i.e. the best response). This is no longer a losing game for player

one who now has an expected payoff of zero. Other deviations from the equilibrium strategy can

be exploited by even more depending on player two’s choice of strategy. In summary, an accurate

model of the opponent’s strategy can be used to great advantage.

4.2 Bayes Filter Components

To use particle filtering, or any Bayesian filtering algorithm, we need to define six components: the

state variables, observations, actions, an observation model, a motion model, and an initial belief.

4.2.1 Observations

In general, an agent receives observations each time they arrive at an information set, i.e., whenever

new public or private information is revealed. In our domain of Kuhn poker, this occurs after each

decision is made and whenever cards are revealed. Instead of using each information set as an

observation, we use a full hand of the game as the observation for each time step in the Bayesian

filter update. We use this approach for two reasons: the simplicity of the resulting filter, and the fact

that player two only makes one decision per hand. With the filter being updated after each hand, an

observation zt corresponds to the information set for player one at a terminal node in the game tree.

This means that the observation will consist of the betting sequence for the hand and any known

cards held by each player. We will denote a Kuhn poker information set from player p’s perspective

as Ip = 〈H1 H2 : D〉where Hi is the cards held by player i and D is the public betting information.

For example, the information set 〈J Q : Bb〉 would be observed when player one has the jack,

player two has the queen, and player one bet followed by a bet from player two. Note that at the end

of a hand we may not know what cards the other player holds. An example of this is when player

one is dealt a jack and bets followed by player two passing. In this case, the information set would

be 〈J ? : Bp〉 with the question mark denoting unknown information.

4.2.2 Observation Model

A general observation model Pr(zt|xt) must be able to compute the probability of an observation

given the current beliefs about the system being modelled. In Kuhn poker, an observation model

represents the probability of the betting and cards that were observed on this hand, given our current

beliefs about the opponent. In order to compute this probability accurately for our case of player one

modelling player two, our strategy parameters xt will need to contain, or from it be able to derive,
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the betting probabilities ηt and ξt from Figure 4.1. Given these parameters, the observation model

Pr(zt|ηt, ξt) comes from the definition of the game itself. The observation model then returns the

product of the probability of the cards that were dealt, the probabilities for the modelling agent’s

actions, and the probabilities for the opponent’s observed decisions given ηt and ξt.

Note that the observation model can often omit terms whose probability is the same regardless of

the current beliefs. For instance, our observation model does not need to account for the probabilities

of the modelling agent’s actions since they are constant for all values of ηt and ξt. The same is true

for the probability of the cards that were dealt because all of the chance event outcomes have the

same probability. Keep in mind that omitting these terms is only possible when the observation

model can be normalized after the fact or when the Bayesian filtering algorithm being used does not

require normalized probabilities (as is the case with particle filters).

To illustrate our observation model, consider the case where we observe the information set

〈K J : PbB〉. Then the observation model should return the product of the probabilities for player

two’s decisions in the branch with the terminal node corresponding to 〈K J : PbB〉. This works

out to ξt. If, instead, the information set was 〈K J : Pp〉, then the unnormalized probability would

be (1− ξt).

Now we examine the case where an opponent’s cards are not known. Consider the information

sets 〈K J : Bp〉 and 〈K Q : Bp〉. Since the second player passes, player one never observes

their card. From player one’s perspective, both of these information sets “look” the same. In

this case player one observes 〈K ? : Bp〉. When an observation has unknown cards the obser-

vation model can compute the probability by marginalizing over the unknown cards. Specifically,

when the observed information set has unknown cards (H2 =?) the observation model returns∑
H2

Pr(zt|H2, ηt, ξt). In our example, summing the probability of each of the possible branches

yields an unnormalized probability of (1 + (1− η)).

4.2.3 State Variables

As we mentioned in Section 4.2.2, the simplest possible state xt that we can have while providing

enough information to accurately compute our observation model is to let xt = [ηt, ξt]. We chose

to use this minimal representation since it is both simple and it was also used by Hoehn and col-

leagues [12, 13]. This choice makes two assumptions. First, that our opponent will not play outside

the parameterization (i.e. does not play dominated strategies). Second, our opponent’s future strate-

gies are conditionally independent of past strategies given their current strategy (i.e. the Markov

property). These assumptions create some limitations on the type of behaviour dynamics that we

can model, but this parameterization is sufficient for the motion models that we have opted to use.

These models are discussed in the next section.
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4.2.4 Motion Models

In general, motion models encode our belief about the state dynamics of the system being modelled.

In our case, motion models are used to encode how other agents will change their strategies over

time. In this thesis we explore two “naive” types of motion models. More precisely, these “naive”

motion models assume that our opponent is oblivious, i.e., they ignore past observations of an

agent’s behaviour when making their current decision. This means that the motion models assume

that the opponent’s strategy is independent of the modelling agent’s past actions.

Our first model assumes that players will change with probability ρ to a uniform random strategy

after every hand. With probability (1 − ρ) they continue using their previous strategy. We call this

a switching model. The switching parameter ρ fully describes the dynamics in this model.

Our second model, which we call a drifting model, assumes that players’ strategies drift after

each hand. Specifically, a player generates each of their next strategy parameters by independently

sampling from a Gaussian distribution with a mean of the current strategy parameter (i.e. η or ξ) and

standard deviation σ. We reject any parameter sampled outside of [0, 1]. The resulting parameter

is therefore a sample from a truncated Gaussian distribution. The standard deviation σ is the single

parameter that describes the dynamics in this model.

Finally, we also refer to a combined motion model which involves both the ρ and σ parame-

ters. In this model, the player switches to a uniform random strategy at the end of the hand with

probability ρ and with probability (1− ρ) it drifts with standard deviation σ.

Now that we have parameterized models of agent dynamics, the parameters must be given a

value. The simplest way to do this is for a human to choose parameter values that are believed to

be appropriate. The motion model and assigned parameter value could then be used as the motion

model component of a particle filter. Alternatively, these parameters could be inferred using the

RBPF algorithm described in Section 3.2.3. This approach requires a few extra components to be

defined and is discussed further in Section 4.3.

4.2.5 Initial Belief

As was shown in Algorithm 1, Bayesian filters require a belief distribution over the previous time

step, bel(xt−1), to estimate the current beliefs, bel(xt). This means that we need to define a proba-

bility distribution for the modelling agent’s beliefs at time step zero (i.e. bel(x0)). An accurate initial

belief is always desirable since it gives us an accurate model to begin prediction with.

We decided to use a uniform random distribution over the state space because it is both simple

and requires no additional knowledge of the opponent. A more informed initial belief would be

beneficial if more is known a priori. For example, one possible “informed” initial belief would be

to have a higher probability that our opponent would choose a strategy close to the equilibrium. Of

course the effectiveness of an initial belief depends on how well it corresponds to the actual initial

strategies one’s opponents employ.
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4.2.6 Actions

Because our naive motion models do not account for the opponent modelling us in any way, we do

not need to incorporate our actions into our Bayesian filtering updates. The math of Equation 3.5

still holds if we remove the actions ut. Another way to think about it is that we do have actions but

they do not affect the motion model and therefore it does not matter what value they have. If we

wanted more elaborate motion models that attempt to reason about how our opponent is modelling

us, then we would need to add proper actions into the model. These actions would consist of the

betting that happened during the hand and our cards if revealed.

4.3 Rao-Blackwellized Particle Filter Components

As we have chosen motion models that are parameterized, we can employ an RBPF to infer our

motion model parameters, ρ and σ. Two more components need to be addressed to use the RBPF:

the sufficient statistics of the conjugate priors for our motion model parameters (ρ, σ), and an initial

belief for our sufficient statistics.

4.3.1 Sufficient Statistics

We briefly mentioned in Section 3.2.3 that RBPFs add little extra computational cost above regular

particle filters as long as we choose a distribution for Pr(xt|xt−1, ut, θ) that has a conjugate prior.

This allows us to learn and compute Pr(θ|x1:t, z1:t, u1:t) using only the sufficient statistics st of our

conjugate prior. We now describe the sufficient statistics of the conjugate priors used to represent

the modelling agent’s beliefs about its opponent’s dynamics.

The binary outcomes of our switching model make a beta distribution, BETA(a, b), ideal for our

conjugate prior over ρ. More formally, if X is drawn from a beta distribution with parameters a > 0

and b > 0, then X has the following probability density function f and mean E[X]:

f(X = x; a, b) =
Γ(a + b)
Γ(a)Γ(b)

xa−1(1− x)b−1

=
xa−1(1− x)b−1

B(a, b)

E[X] =
a

a + b

where B(a, b) is the beta function. Using a beta distribution means that a and b are the sufficient

statistics for ρ. Upon observing a transition the sufficient statistics are updated as follows: if xt−1 =

xt increment b, otherwise increment a.

Inverse-gamma distributions (or inverse-Wishart distributions in the multivariate case) have often

been used as conjugate priors for normal distributions. This work also uses them for this purpose and

represents the distribution over the variance σ2 of the drifting model’s Gaussian distribution as an

inverse-gamma, INV-GAMMA(v, w). Formally, if X is drawn from an inverse-gamma distribution
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with shape parameter v > 0 and scale parameter w > 0 then X has the following probability density

function f and mean E[X]:

f(X = x; v, w) =
wv

Γ(v)
x−v−1 exp

(
−w

x

)
E[X] =

w

v − 1
for v > 1

Using an inverse-gamma distribution results in v and w being the sufficient statistics for σ2. In

general, to update v and w to account for a new observation x of the Gaussian (with known mean

µ), we let v = v+1/2 and w = w+(x−µ)2/2. Because we independently sample the Gaussian for

each of our parameters, transitions are treated as one observation of σ2 per dimension. On observing

a transition the update adds ||xt−xt−1||2/2 to w and d/2 to v, where d is the number of dimensions

in the state vector (two, in our case).

Using these sufficient statistics in Algorithm 3 consists of storing the sufficient statistics with

each particle’s state and updating them on each time step according to the aforementioned rules.

Our sufficient statistic for the combined model for particle i at time step t is s
(i)
t = [a, b, v, w]. Of

course if we wanted to change our modelling agent’s motion models, s
(i)
t would need to represent

all of the sufficient statistics necessary for the new motion models.

4.3.2 Sufficient Statistic Priors

Finally, we need to choose a prior belief over ρ and σ. For our experiments we tried to choose

prior distributions that looked “reasonable”. We fairly arbitrarily settled on ρ ∼ BETA(1, 30) and

σ2 ∼ INV-GAMMA(0.6, 0.00005). Note that our inverse-gamma prior has an undefined mean since,

for v = 0.6 ≤ 1, the integral for the expectation of the inverse-gamma is infinite.

4.4 Using Our Model

We now consider what to do with our posterior belief about the opponent’s strategy. The correct

Bayesian approach is to select the action that maximizes the sum of all future expected utility given

our belief. This utility is dependent on the information we learn about our opponent and the infor-

mation our opponent learns about us. In general, this computation is intractable as it requires us

to consider not only our own actions but how our actions impact our future winnings. Finding the

Bayesian best-response would consist of running an expectimax algorithm on a lookahead tree of

size |I|d = 16d nodes where d is the number of hands left in our match and |I| is the number of

possible terminal information sets in a single hand (i.e. the number of leaves in Figure 4.1). For

any reasonable length of game, this is not computable. An alternative to solving the full Bayesian

best-response would be solving a Bayesian best-response that only uses a small lookahead. This

would not guarantee the same degree of exploitation as the full best-response, but the limited size of

the tree would make the computation tractable.
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Because our motion models assume the opponent is oblivious and due to the computational cost

in performing lookahead, we have opted to compute the greedy Bayesian best response rather than

attempting any kind of lookahead. Specifically, our greedy Bayesian best response tries to maximize

the value of the current hand (i.e. a lookahead of depth d = 1). This is the same approach used by

Bayes’ Bluff [23]. Computing this greedy response consists of choosing a set of parameters that will

maximize the modelling agent’s expected value on the current hand given its current beliefs. The

greedy response in this case is to play the best-response to the mean of our particles.

To show this, we first need to define the expected value of a hand of Kuhn poker from player

one’s perspective given each player’s strategy parameters. Examining the terminal information sets

T of the game tree in Figure 4.1, we can determine an equation for this expected value.

E[I1|α, β, γ, η, ξ] =
∑
I1∈T

V1(I1) · Pr(I1)

=
1
6
·
[
− 1 · (1− α) + 1 · (1− η)α +−2ηα +−1 · (1− α) +−2α +

1 · (1− ξ) +−1 · (1− β)ξ + 2βξ +−1 · (1− β) +−2β +

1 · (1− ξ)(1− γ) + 2ξ(1− γ) + 1γ + 1 · (1− γ) +

1 · (1− η)γ + 2ηγ

]
=

1
6
·
[
η(γ − 3α) + ξ(3β − γ − 1) + (α− β)

]
(4.1)

If we hold player one’s parameters (α, β, γ) constant in Equation 4.1, then the equation is linear in

our chosen state variables η and ξ.

Next, we will use this result to show that the best-response to our particle posterior is just the

best-response to the mean of the particles. At time step t, we want our modelling agent to choose

strategy parameters s = [α β γ] that maximize the expected value over our opponent’s unknown

strategy parameters ot = [ηt ξt] given our beliefs about their previous strategy ot−1 = [ηt−1 ξt−1]

and their motion model M .

max
s

E
[
E[I1|s, ot]|ot−1,M

]
= max

s
E

[
1
6
·
[
ηt(γ − 3α) + ξt(3β − γ − 1) + (α− β)

]
|ot−1,M

]
(4.2)

= max
s

(1
6
·
(
E[ηt(γ − 3α)|ot−1,M ] +

E[ξt(3β − γ − 1)|ot−1,M ] + E[(α− β)|ot−1,M ]
))

(4.3)

= max
s

(1
6
·
(
(γ − 3α) · E[ηt|ot−1,M ] +

(3β − γ − 1) · E[ξt|ot−1,M ] + (α− β)
))

(4.4)

= max
s

E
[
I1|s,E[ot|ot−1,M ]

]
(4.5)

Equation 4.2 substitutes Equation 4.1 into the expectation. Equation 4.3 follows from the linearity of
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expectations. Equation 4.4 results from α, β, and γ being fixed constants in the expectation. Finally,

Equation 4.5 uses the equality from Equation 4.1.

Finding the strategy that maximizes Equation 4.5 (i.e. the best response strategy) can be done by

differentiating Equation 4.1 with respect to α, β, and γ. Solving these derivatives for when they are

positive gives us a set of inequalities for determining how to set the modelling agent’s parameters to

maximize Equation 4.5. These derivations are shown below.

d

dα
E[I1|α, β, γ, η, ξ] = (1− 3η)/6 > 0 ⇐⇒ η < 1/3

d

dβ
E[I1|α, β, γ, η, ξ] = (3ξ − 1)/6 > 0 ⇐⇒ ξ > 1/3

d

dγ
E[I1|α, β, γ, η, ξ] = (η − ξ)/6 > 0 ⇐⇒ η > ξ

Letting each parameter be 1 when its corresponding derivative is positive and 0 otherwise (recall

that the values must be in [0, 1]) gives a parameter setting that maximizes the modelling agent’s

expected value on a given hand if their beliefs are true. For a hand at time t we compute and play

the best-response to the mean of our particle posterior at time t− 1.
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Chapter 5

Experimental Results

This chapter evaluates our particle filter and RBPF modelling approaches against a variety of oppo-

nents, both static and dynamic, and when our prior beliefs are both correct and incorrect. This will

help us to understand the effectiveness and robustness of these approaches. We begin our analysis

by examining static opponents and then move on to dynamic opponents.

5.1 Static Opponents

Hoehn and colleagues’ previous work on opponent modelling in Kuhn poker focused on static op-

ponents [12, 13]. One of their experiments was designed to compare the quality of a number of dif-

ferent exploration strategies. These strategies were used during an initial exploration phase to help

build an accurate opponent model. After exploration, their modelling agent would stop learning and

switch to exploiting the learned model using the greedy best response we described in Section 4.4.

The hand where the modelling agent switches to exploitation of its model is called the switching

hand. We perform a similar experiment using our particle filtering approach with two of their bal-

anced exploration strategies. Our experiment aims to answer three questions. Is our particle filtering

approach comparable to, or even better than, Hoehn’s parameter estimation when the opponent is

static? How beneficial is it to continue learning after the exploration phase? Is an exploration phase

needed if the modelling agent continues to learn throughout the interaction?

We play a particle filter modeller using a stationary motion model against Hoehn’s six static

opponents, O1 through O6. Each opponent corresponds to a different best response strategy for

player one. An opponent’s exact values for η and ξ are provided in the figures. For each op-

ponent, we display results for two of Hoehn’s exploration strategies both when we stop learning

after the switching hand, and also when we continue to learn throughout the full length of the

match. The exploration strategies we use are the Nash equilibrium strategy for player one with

γ = 0.75 and the BalancedExplore strategy. This equilibrium strategy has strategy parameters of

[α, β, γ] = [0.25, 0.583, 0.75]. This strategy ensures η and ξ will have equal probability of being

observed with complete information while achieving the equilibrium value. On the other hand, Bal-
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ancedExplore uses [α, β, γ] = [1, 1, 0.5]. Although this strategy is more vulnerable to exploitation,

it avoids actions that prevent player one from learning about player two’s parameters while ensuring

η and ξ are observed with equal probability.

The resampling phase of the particle filter is disabled for these experiments because resampling

when the particles are stationary is unnecessary and would cause particle impoverishment almost

immediately. This topic will be covered in greater detail in the particle impoverishment segment of

Section 5.2.1. Our results display each approach’s expected total winnings at the end of a match.

Each match consists of 200 hands between a particle filter of 1000 particles and one of the six static

opponents. Matches are repeated 5000 times for statistical confidence.

We begin our analysis with an examination of Hoehn’s parameter estimation results together

with our particle filtering approach when learning is stopped. The results of this comparison are

presented in Figures 5.1 through 5.3. These results show that our particle filtering approach, when

learning is stopped after switching from exploration to exploitation, tends to benefit overall from

the exploration phase. The amount of gain from exploration varies considerably depending on the

opponent and the exploration strategy. The equilibrium exploration strategy yields the largest im-

provements when used for the first 30 to 50 hands (except against O2 which did not improve at

all). The BalancedExplore strategy, on the other hand, gives the largest performance improvements

against O1 around hand 20 and around hand 50 against O4, O5, and O6. BalancedExplore provides

no benefit against O2 and O3. More importantly, these results show that our particle filtering tech-

nique yields similar performance to Hoehn’s parameter estimation. Note that our particle filtering

results lack the smoothness of Hoehn’s parameter estimation. This is due to the fact that our re-

sults were generated by actually playing the game whereas Hoehn’s results were computed using a

closed form calculation of the game’s expected value. This adds noise to our computation, but our

experiments yielded 95% confinence intervals that are no larger than ±0.72.

Next, we present results of our particle filtering approach when learning is stopped and when

learning continues throughout the match in Figures 5.4 through 5.6. These results allow us to com-

pare the modeller’s performance when learning is stopped at the switching hand versus continuing

to learn throughout the match. As the switching hand increases, the exploration strategy is used for a

longer portion of the match, so continued learning has less of an effect. On the other hand, when the

switching hand is smaller, we consistently see that continuing to learn improves performance over

stopping learning. One possible exception to this is O6. In this case there are points where stopping

learning appears beneficial when using the BalancedExplore strategy. A Wald test with 95% confi-

dence at the switching hand where the difference is greatest indicates that this improvement is not

statistically significant.

Focussing now on the case where learning continues throughout the match, we note that using

a switching hand of 0 (immediately exploiting the prior) tends to outperform any kind of explo-

ration. The exceptions to this are against opponents O4 and O6. In these cases, exploring with the

37



Motion Model
Opponent Switch (ρ) Drift (σ)

A 0.0 0.0
B 0.002 0.005
C 0.01 0.02
D 0.05 0.05
E 0.1 0.1

Table 5.1: Oblivious Dynamic Opponent Legend

BalancedExplore strategy provides a statistically significant improvement according to a Wald test

with 95% confidence between switching hand 0 and the switching hand with greatest total winnings.

Unfortunately this improvement is due less to exploration and more to the choice of the exploration

strategy. Observe that against both of these opponents, the BalancedExplore exploration strategy

does better than the equilibrium if used all the way through the match. Over 200 hands, the Bal-

ancedExplore strategy has an expected value of −3.89 against O4 and 12.5 against O6, whereas the

equilibrium has an expected value of −11.11. This suggests that using exploration strategies which

can also exploit an opponent’s weaknesses enables a modelling agent to improve its model with lit-

tle loss due to exploration, thus yielding an overall improvement in performance. Conversely, a bad

choice of exploration strategy, despite improving the model, incurs more loss than can be regained

with the resulting model.

These results show that our particle filtering technique is comparable with the parameter estima-

tion techniques presented by Hoehn and colleagues against static opponents. Moreover, it appears

that continued learning not only improves performance compared to stopping learning but it also

greatly reduces the benefits of an exploration phase. In fact, unless we choose an exploration strat-

egy that also exploits the opponent, it appears that an exploration phase has little, if any, benefit

over continued learning. For these reasons, we use continued learning with no exploration phase

throughout the match for the rest of our experiments. Since our approach was specifically designed

to handle dynamic agents we will now move on to those results.

5.2 Oblivious Dynamic Opponents

The majority of our remaining results examine the performance of our particle filtering techniques

for agent modelling against a variety of oblivious dynamic opponents. Recall that oblivious oppo-

nents ignore our past actions when choosing their strategy. The oblivious opponents in our results are

either switching opponents or drifting opponents using the switching or drifting models described in

Section 4.2.4. We use nine distinct motion models (4 switching, 4 drifting, and 1 stationary) with the

specific values of ρ and σ given in Table 5.1 to create a range of opponents that move both slowly

and quickly. As with the static opponents, the particle filter’s resampling phase is disabled when us-

ing the stationary motion model (model A). This choice and related discussion is presented later in

the particle impoverishment segment of Section 5.2.1. In our experiments, we play several particle
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Figure 5.1: Total expected winnings of Hoehn’s parameter estimation and particle filtering using
exploration and a stationary motion model against static opponents O1 (a) and O2 (b) over 200 hand
matches.
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Figure 5.2: Total expected winnings of Hoehn’s parameter estimation and particle filtering using
exploration and a stationary motion model against static opponent O3 (a) and O4 (b) over 200 hand
matches.
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Figure 5.3: Total expected winnings of Hoehn’s parameter estimation and particle filtering using
exploration and a stationary motion model against static opponent O5 (a) and O6 (b) over 200 hand
matches.
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Figure 5.4: Total expected winnings of particle filtering using exploration and a stationary motion
model against static opponents O1 (a) and O2 (b) over 200 hand matches.
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Figure 5.5: Total expected winnings of particle filtering using exploration and a stationary motion
model against static opponents O3 (a) and O4 (b) over 200 hand matches.
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Figure 5.6: Total expected winnings of particle filtering using exploration and a stationary motion
model against static opponents O5 (a) and O6 (b) over 200 hand matches.
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filtering incarnations against each of the nine opponents for 1000 hand matches. Each particle filter

uses 1000 particles with learning throughout the entire match and no exploration phase. Matches are

repeated 5000 times for statistical confidence. At the beginning of each match, the opponent’s η and

ξ parameters are initialized by sampling each parameter independently from a uniform distribution

over [0, 1].

Recall that since these experiments involve player one modelling player two, this is actually a

“losing” situation for the particle filter modeller. If the modelling player instead played any equilib-

rium strategy it would expect to lose more than $55 over a 1000 hand match. A less naive strategy

would exploit the fact that E[ηt, ξt] = (0.5, 0.5) with any of our motion models. Because of our

choice of motion models, we can expect opponents, barring any additional information, to make

uniformly random decisions between any undominated choices on every round. The best-response

to such random play is an alternative static strategy that has an expected value of zero against any of

our opponents. In fact, for our motion models, if the value of ρ or σ is sufficiently large, we cannot

expect any agent modelling technique to do better than zero on average. This is because E[ηt, ξt|z1:t]

will approach (0.5, 0.5) as ρ or σ increases. This makes zero a good baseline comparison for which

effective opponent modelling should rise above.

Further context for our results is provided by two exploitability lines. These lines indicate the

expected winnings that could be obtained given certain information about our opponent. The top

line in each graph corresponds to the expected winnings if we know our opponent’s strategy at every

hand. This is an upper bound on any modelling agent’s expected performance since it represents

full knowledge of our opponent (except for their randomly dealt card). Since it is unreasonable to

expect that we can attain that value, we also present a second exploitability line which accounts

for uncertainty due to an opponent’s strategy dynamics. The lower exploitability line represents the

expected winnings if we are given our opponent’s strategy on their previous hand and their motion

model. Although this is a better baseline for comparison, both of these exploitability lines are loose

upper bounds on the maximum possible performance since it takes time to estimate an opponent’s

strategy parameters even when they are static.

Our analysis examines the performance of particle filtering in three cases: when the opponent’s

motion model is fully known, when the model’s form is known but the parameters are not, and

when the exact model form is not known. Figures 5.7 and 5.8 summarize the results of using the

various incarnations of particle filters against the nine aforementioned opponents. Graph (a) of both

figures shows the results for the switching opponents and graph (b) shows the results for the drifting

opponents. In all of the graphs, the x-axis corresponds to the different opponents from Table 5.1.

Note that opponent A is stationary and therefore the same in the switching opponent and drifting

opponent graphs. The set of bars for each opponent shows the average total winnings of one of the

particle filter variants. The “Avg” opponent is the average result against opponents A through E. We

dissect these figures further throughout the rest of this section.

45



 A  B  C  D  E Avg
!10

0

10

20

30

40

50

60

70

80

To
ta

l W
in

ni
ng

s 
($

 o
ve

r 1
00

0 
ha

nd
s)

Opponent

A

A

A

A A

A

B

B

B

B
B

B

C
C

C

C

C

C

D D
D

D

D

DE E
E

E

E

E

(a) Switching Opponents

 A  B  C  D  E Avg
!10

0

10

20

30

40

50

60

70

80

To
ta

l W
in

ni
ng

s 
($

 o
ve

r 1
00

0 
ha

nd
s)

Opponent

A
A

A

A
A

A

B B

B

B
B

B

C C

C

C

C

C

D D
D

D

D

D

E E E

E

E

E

(b) Drifting Opponents

Figure 5.7: Total winnings of vanilla particle filter modelling against different oblivious dynamic
switching opponents (a) and drifting opponents (b). Each bar represents a different setting of ρ (a)
or σ (b) in the particle filter’s motion model

46



5.2.1 Known Motion Model

For each opponent in Figure 5.7, the set of bars shows the average total winnings of particle filtering

when using the correct form of the motion model, but varying the parameter in that model (i.e. ρ or

σ). We use the same set of values for the particle filter parameters as the opponents and so each bar

is labeled with the corresponding opponent’s identifier from Table 5.1.

Consider the case when we know both the form and the parameters of the opponent’s motion

model. Specifically, we know whether the opponent is a switching or drifting player as well as

the exact probability of switching or the standard deviation of their drift. This corresponds to the

bars of Figure 5.7 that match the opponent being played on the x-axis. Although the winnings vary

depending on the opponent, for all nine opponents the correct model outperformed the baseline static

strategy which has an expected value of zero.

In reality, it is impractical for us to assume that we would ever have a completely correct model

of our opponent. This leads us to wonder what would happen if our model was wrong. The re-

maining bars of Figure 5.7 correspond to using the correct form of our opponent’s motion model

but with an incorrect parameter value. Generally, our results make intuitive sense. The closer the

particle filter’s parameter is to the true parameter value, the better it performs. Conversely, greater

differences between the parameter and the true value result in poorer performance. Sometimes an

incorrect model can cause a drastic decrease in performance, even dropping below the static base-

line’s expected value of zero. For instance, against both the switching and drifting opponents we see

that if we believed the opponent to be using model B and they were actually using model E, then we

drop below our baseline. Despite this poor performance, it is interesting to note that this worst case

scenario still outperforms an equilibrium strategy by over $48. There are a few exceptions to these

general trends which are caused by particle impoverishment. This phenomenon is discussed next.

Particle Impoverishment

At a high level, particle impoverishment occurs when the particle filter becomes overconfident in its

posterior distribution. A particle filter is overconfident if most of the particles’ weight is concentrated

in only a few places (possibly just one). The primary cause of particle impoverishment is insufficient

noise in either the motion or observation model to maintain a diversity of particles. Because of this,

even an accurate probabilistic model of a system with little noise can still lead to overconfidence

and particle impoverishment.

Consider the case when we make an observation where our observation model assigns a large

weight to particles in a small region of the state space and a small weight to the rest of the particles.

If we resample after such an observation, then some low weight particles will be discarded in ex-

change for particles with large weights. This is fine so long as there are enough distinct particles to

approximate the true posterior distribution. On the other hand, if many of the particles are collocated

then we may not have enough remaining particles to accurately approximate the low, but non-zero,
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probability regions of the posterior.

Using a motion model that adds noise to the particles, even if the noise is artificial, will help

to keep the particles distinct and prevent particle impoverishment. A stationary motion model on

the other hand will inevitably lead to particle impoverishment. If the particles never move except

during resampling, then we will progressively remove states that are covered by a particle. We

attempted to mitigate this problem in our experiments by disabling the resampling phase when using

the stationary model.

Particle filters can still become overconfident for other reasons. In our experiments, using the

stationary motion model with no resampling results in the particle filter creating fixed particles

whose weights are updated throughout the match. If one particle is considerably more probable than

the others, it will take many observations to overcome the weight built up by the initial observations.

We believe this is why model A does poorly when modelling non-stationary opponents in Figure 5.7.

Moreover, when the particles are stationary they cannot be moved later to refine our estimate. This

means that we are relying on starting with a particle close to our opponent’s true strategy. If this does

not happen then our agent’s performance will suffer. This is probably the case in our experiment

comparing model A against opponent A in Figure 5.7. Using “noisier” models can improve a particle

filter’s robustness to overconfidence. In our case, motion models with larger values of ρ and σ are

more likely to create new particles throughout a match. This gives the particle filter a chance to

recover when it is wrong. The effects of this improved robustness is observed in Figure 5.7 where

the “noisier” motion models tend to outperform model A despite being further from the opponent’s

true motion model parameters. Similar phenomenon have been well documented in the particle

filtering literature [17].

Figure 5.7 also shows us that noisier models are not always better. Note that the stationary model

A outperforms model B against some of the quickly moving opponents (especially E). Although

noisier models tend to be more robust, model B adds very little noise – insufficient noise to prevent

particle impoverishment. Since model A does not resample, and the opponents move quickly, model

A does not become as overconfident as it would against slowly changing opponents. This results in

model A being a more robust choice than model B against these opponents.

5.2.2 Unknown Motion Model Parameters

Since it is unrealistic to expect to know the exact parameters of an agent’s motion model, we need a

more practical way to model that is also robust to error. One simple approach is to use a standard par-

ticle filter with a motion model parameter that works well even when incorrect. Figure 5.7 indicates

that model C has the best average performance across both the switching and drifting opponents (see

the “Avg” bars at the right of the graphs).

Alternatively, we could use the Rao-Blackwellized particle filtering technique described in Sec-

tion 3.2.3 for dual estimation of the state and the motion model parameter. The results of this
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Figure 5.8: Total winnings of RBPF modelling against different oblivious dynamic switching oppo-
nents (a) and drifting opponents (b). The bars labelled “C” come from Figure 5.7.
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approach are shown for the same suite of switching and drifting opponents as before in Figure 5.8.

For each opponent we present model C from Figure 5.7 as a baseline for comparison along with

three RBPF modellers. Rs corresponds to using our prior over switching probabilities (assuming no

drift), Rd corresponds to using our prior over drifting amounts (assuming no switching), and Rc cor-

responds to an independent prior over both forming a combined model. For the moment our analysis

will focus on Rs and Rd, leaving discussing about the combined model until the next section.

Examining the graphs of Figure 5.8 we observe that against most switching opponents Rs per-

forms better than the baseline of particle filtering using model C. Although model C does outperform

Rs occasionally, Rs is never dramatically worse than model C. Against the quickly switching model

E opponent, Rs does considerably better than model C since the RBPF technique enables Rs to

infer the opponent’s switching parameter. This means that Rs is able to learn and adapt to the fast

switching rate of opponent E whereas model C is locked into its one parameter value. Although

the RBPF techniques only yield marginal performance improvements on average, they do provide

additional flexibility and robustness. More specifically, using the RBPF technique means we do not

need to rely on “guessing” the best fixed model for arbitrary agents. Comparing model C and Rd

against the drifting opponents yields a similar result.

Once again, it is interesting to consider the effects of having incorrect information when mod-

elling since it is unlikely that we can rely on agents being pigeonholed into a small number of

behaviours. Going one step further than in Section 5.2.1, we examine the impact of having the in-

correct form of our opponent’s motion model. This type of error is observed in Figure 5.8 when

using Rd to model switching opponents and Rs to model drifting opponents.

Despite having the incorrect form of the model the loss incurred by this error (relative to using

the correct RBPF model) is never more than $9 over 1000 hands. This is relatively small consider-

ing that none of our beliefs about the dynamics are correct. Also note that the average performance

of our dual estimation with the wrong form of the model is still close to the average performance

for model C – our best average model when particle filtering with the correct model form from

Figure 5.7. This result is due to the RBPF learning a parameter for the incorrect model form that de-

scribes the opponent’s dynamics relatively well. In fact, we can see that Rs actually does better than

Rd at modelling quickly drifting opponents. In this specific case, our choice of prior probably makes

the switching model assign a higher likelihood than the drift model to large strategy drifts. Our effec-

tive modelling, despite incorrect models of our opponents, suggests that Rao-Blackwellized particle

filtering is robust enough to compensate for both an incorrect model parameter and an incorrect form

of the model.

5.2.3 Unknown Motion Model

In general, it is impractical to assume that we have correct information about an agent’s dynamics

model. Regardless of this problem, we want to model agents effectively while remaining robust to
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potential errors. If we do not know the exact form of the model we can still employ RBPF techniques

for dual estimation. In the same way we used RBPFs in Section 5.2.2 to infer the single parameter

of a given motion model, we can also use RBPFs to infer multiple parameters of a combination of

model forms. In this experiment we use RBPFs to infer the parameters of our combined motion

model as described in Section 4.2.4.

Turning now to Figure 5.8, we see that the combined model, Rc, is reasonably competitive with

the correct model against all opponents. One slight oddity in the results is that Rc performs almost

identically to Rs. We believe that this similarity is due to our choice of prior over the two models.

This claim is supported by Figure 5.9 which shows the performance of Rs, Rd, Rc, and another

combined model Rc′ . The prior for Rc′ is identical to the prior for Rc mentioned in Section 4.3.2

except that Rc′ uses a “lighter” prior with ρ ∼ BETA(0.1, 3.0). Both of these priors have the same

mean, but the prior for Rc′ has a larger variance and is more easily overcome by new observations

than the prior for Rc. Generally Rc performs better against opponents that change strategies more

quickly. This intuitively makes sense since having stronger beliefs that our opponent is moving

rapidly should improve the modelling against opponents who are, in fact, moving rapidly.

These results suggest that RBPFs can also account for an unknown form of an agent’s motion

model. This is satisfying since it means that it is not critical to know much about our opponent

a priori – just a few models that could explain their dynamics. One question that these results do

not answer is how well our approach works against opponents who are not oblivious and will pay

attention to our actions when making their decisions. The next section addresses this question.

5.3 Non-oblivious Dynamic Opponents

Up to this point all of our results have focussed on opponents that do not learn and either use a fixed

strategy or randomly alter their strategy. These opponents provide a good baseline evaluation, but

they fail to test the performance of our technique against more sophisticated opponents. We would

especially like to fare well when modelling adaptive agents since it is doubtful that a human player

will be oblivious. For our experiments against non-oblivious opponents we compare our technique

against an agent using the Exp3 regret minimization algorithm presented by Auer and colleagues [1]

(and also examined in Hoehn’s work [12]).

As we mentioned in Section 2.5.1, the Exp3 algorithm is an experts algorithm for regret min-

imization. On each trial, an experts algorithm updates the probability distribution over its experts

based on the amount of reward each expert received (or would have received) on the iteration. More

specific to our application, Exp3 updates its distribution over experts after receiving the outcome

(money won or lost) of each hand. The Exp3 agent will play as player 2 modelling player 1 (our

agent modeller). In this case, the Exp3 agent’s experts will consist of the four best response strate-

gies available to player 2 (i.e. player two’s pure strategies). Our implementation of the algorithm

effectively mirrors the description found in [1].
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Figure 5.9: Total winnings of RBPF modelling against different oblivious dynamic switching oppo-
nents (a) and drifting opponents (b). The bars labelled Rs, Rd, and Rc all come from Figure 5.8.
Rc′ was generated using a lighter ρ ∼ BETA(0.1, 3.0) prior.
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One detail that was left to us was a choice of parameters for the algorithm. The Exp3 algorithm

presented in [1] required two parameters: a parameter to control the amount of uniform exploration,

γ, and a parameter to control the learning rate, η. These parameters are not to be confused with the

Kuhn poker strategy parameters. To set the parameters, we used the method suggested in [1] that

would preserve the regret bounds. For our case of using the Exp3 algorithm as player two modelling

our algorithms as player 1, this worked out to a γ of 0.056808 and η of 0.014202.

Exp3 is the simplest experts algorithm for a game with partial information. Unlike more so-

phisticated experts algorithms, Exp3 only rewards the expert that was actually being used in a given

hand. In contrast, other experts algorithms (e.g. Exp4) also update experts that are related to the

chosen expert. This is done by checking which experts would have made similar decisions to the

chosen expert. For the purposes of this thesis, we chose to use Exp3 as our non-oblivious opponent

due to the ease of implementation.

Our results display two baselines to provide context for our results. The first baseline is the

equilibrium value of the game (−55.56 dollars over 1000 hands). This is displayed as the minimum

value in the graphs of Figure 5.10. Note that this is different from our previous static strategy

baseline with an expected value of zero. Since Exp3 is not oblivious, we cannot exploit the fact that

our opponent’s strategy distribution will have a fixed expected value. In fact, Exp3’s expected regret

(the difference between the total reward of Exp3’s best expert and the expected reward of Exp3) is

bounded by O(
√

T ) where T is the number of trials (i.e. hands of Kuhn). Therefore, as T approaches

infinity, Exp3’s average expected regret
√

T/T will converge to 0 and Exp3’s strategy will win at

least as much as the equilibrium. Our second baseline for these experiments is another exploitability

line. In this case, the exploitability line indicates the expected outcome of the game if we are given

the weighted mixture of Exp3’s experts on every hand. This exploitability line amounts to knowing

the internal state of Exp3 (each of its experts and their associated probability of being chosen) but

not the random number generator used by Exp3. The anomalous value for the exploitability against

drifting model D has been confirmed with repeated experiments. Unfortunately, at this time we have

no explanation for why the exploitability of Exp3 increases for this model while the particle filter

performs more poorly.

Figure 5.10 shows the performance of our different particle filters and RBPFs against the Exp3

algorithm. These experiments share the same experimental setup as those in Section 5.2: 1000

hand matches repeated 5000 times where each filter uses 1000 particles with learning throughout

the entire match and no exploration phase.

Observe that in contrast to the oblivious opponents, all of our techniques (regardless of motion

model) lose money against the Exp3 player. Keep in mind that Kuhn poker is a “losing” game for

player one with an equilibrium value of −55.56 over 1000 hands. Moreover, even if we were given

Exp3’s weighted mixture of experts, we still would have lost between −4.55 and −7.9 over the

match. That said, all of our techniques still outperform an equilibrium strategy by a large margin –
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reiterating why agent modelling is beneficial against exploitable opponents. Also note that none of

the models we used were specifically crafted to model our Exp3 opponent. This suggests that simple

motion models can still be effective at modelling more complex dynamics.

Against both oblivious and non-oblivious opponents, regardless of having the correct form of

the model or the correct parameters, state estimation techniques provide an effective and robust

framework for modelling dynamic agents in Kuhn poker. One final consideration with any particle

filtering algorithm is how many particles are needed to perform well. This topic is the focus of the

next section.

5.4 Effect of the Number of Particles

The quality of a particle filter’s approximation depends, in part, on the number of particles used to

represent the posterior. Examining the quality of our particle filtering algorithms when using dif-

ferent quantities of particles may provide answers to two important questions. What is the smallest

number of particles we can use while maintaining good modelling? If we could use more particles,

how much would it improve our modelling?

These experiments compare the performance of model C – our best average particle filter model

– against oblivious opponents using our nine different models (4 switching, 4 drifting, and 1 sta-

tionary). Experiments consisted of 5000 trials of 1000 hands without exploration and learning con-

tinuing throughout the entire match. As before, the opponent’s η and ξ parameters are initialized

according to a uniform distribution over [0, 1]. Results with up to 500 particles are shown in Fig-

ure 5.11 and up to 10000 particles is shown in Figure 5.12. We first consider the expected effect of

varying the number of particles and then contrast this with our experimental results.

Typically, one expects that increasing the number of particles in a particle filter will improve the

performance of the filter, although with diminishing returns. This intuition stems from the fact that

particle filters are known to be asymptotically unbiased [25]. That is, as the number of particles

approaches infinity, the particles will be distributed according to the posterior. On the other hand, if

the number of particles is finite, then the sampling process will result in a biased estimate of the true

posterior. This bias is especially evident when using a small number of particles. To illustrate this,

consider the extreme case where there is only a single particle. This particle will be sampled from the

motion model, weighted by the observation model, and resampled. Since there is only one particle,

the resampling phase will always result in the single particle being chosen, regardless of its weight.

This effectively discards the observation model weighting. As a result, the particle (and therefore our

estimated posterior) will be distributed according to Pr(xt|u1:t) instead of Pr(xt|z1:t, u1:t). This

type sampling bias can frequently have a negative impact on the particle filter’s estimate.

The intuition that increasing the number of particles will yield diminishing returns holds true

experimentally. Figure 5.11 shows a trend of large performance gains from relatively small increases

in particles. Diminishing returns are evident in Figure 5.11 – especially when the number of particles
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Figure 5.10: Total winnings of RBPF modelling and vanilla particle filter modelling with switching
models (a) and drifting models (b) against the non-oblivious dynamic Exp3 opponent.
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is increased from 250 to 500. Looking at Figure 5.12, we see that diminishing returns continue up

to the point of 10000 particles.

One counterintuitive result is the decrease in performance when increasing the number of parti-

cles used against opponents A and B (though the decrease is very slight against switching opponent

B). As we demonstrate in the following example, the change in bias resulting from an increase

in particles does not necessarily move our estimated mean closer to the system’s true state. Sup-

pose that we have a set of particles modelling a state whose value is in [0, 1], like our Kuhn pa-

rameters η and ξ. Assume that we saw an observation that corresponds to the true state being

x = 1 and the particle filter’s observation model returns a likelihood equal to the particle’s state

(i.e. particle p with state x ∈ [0, 1] has unnormalized probability x). Normalizing this distribu-

tion so it sums to 1 over the range of x results in Pr(z|x) = 2x. If we had an infinite num-

ber of particles that were uniformly distributed in [0, 1], then the mean of the particles would be∫ 1

0
Pr(z|x)x dx =

∫ 1

0
2x2 dx = 2/3. Now consider the case where we have a finite set of particles,

say three of them, distributed with x = {0, 0.5, 1}. Then by taking the weighted mean of the par-

ticles we get a mean of (02 + 0.52 + 12)/(0 + 0.5 + 1) = 5/6. Similarly, recomputing the mean

for particles at x = {0, 0.25, 0.5, 0.75, 1} yields a mean of 3/4. As we can see from this example,

using a small number of particles can bias our estimated mean toward the true value of 1 and away

from the unbiased mean of 2/3. Even the increase from 3 to 5 particles results in a significant shift

away from the true value.

We believe that the dip in our performance after an increase in particles is caused by the same

effect. Consider a strategy for player two that is close to the boundaries of the [0, 1]2 strategy space.

Since it is close to the boundary of the strategy space, it is likely that the distribution of particles

around the strategy will be uneven. Like the above example, an uneven distribution of particles can

shift the mean of the particle filter away from the true strategy. This effect is especially apparent

against opponents A and B since they move slowly and are more likely to initially choose a strategy

near the boundary and then never move from that strategy.

Our choice to use 1000 particles in our earlier experiments was fairly arbitrary and largely based

on the time required to run experiments. From these results, we can see that increasing the number of

particles yields very little improvement. Moreover, if we were concerned about the computational

complexity of the modelling and were willing to suffer some performance losses, then we could

use between 250 and 500 particles while still maintaining relatively good performance. In fact, for

model C against the oblivious opponents, using only 10 particles still beats an equilibrium strategy.
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(b) Drifting Opponents

Figure 5.11: Total winnings of particle filter modelling using switching model C (a) or drifting
model C (b) against different oblivious dynamic switching opponents (a) and drifting opponents (b).
Each datapoint represents a different number of particles used in the particle filter.
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(b) Drifting Opponents

Figure 5.12: Total winnings of particle filter modelling using switching model C (a) or drifting
model C (b) against different oblivious dynamic switching opponents (a) and drifting opponents (b).
Each datapoint represents a different number of particles used in the particle filter.
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Chapter 6

Conclusions and Future Work

This thesis advocated the use of state estimation techniques as an approach to modelling agents

with dynamic behaviour. We described two well known Monte Carlo state estimation algorithms:

particle filters and Rao-Blackwellized particle filters. We then described how we applied these

techniques for modelling agents in the domain of Kuhn poker. Our experiments showed that these

techniques were effective at modelling and exploiting static and dynamic opponents. Moreover, our

experiments demonstrated that using Rao-Blackwellized particle filters for dual estimation of an

opponent’s strategy and dynamics provides robustness to incorrect beliefs.

Although equilibrium strategies guarantee a minimal expected payoff, they fail to fully take

advantage of weaknesses in an opponent’s strategy. We demonstrated in our experiments that our

approach provides considerable improvement over equilibrium policies when playing against ex-

ploitable opponents. Furthermore, our experiments showed that our state estimation approaches

were competitive with the approaches presented by Hoehn et al. [12] for modelling static opponents

in Kuhn poker.

Unlike many agent modelling techniques, including Hoehn’s approach, our focus was on mod-

elling dynamic agents rather than static agents. Our state estimation approach allows us to directly

encode an agent’s dynamics into our model. This makes it easier to express agent dynamics that

are more sophisticated than simply “forgetting” past observations. Modelling an agent’s dynamics

distinguishes our approach from many previous agent modelling techniques that would fail if the

agent’s behaviour changed over time. Our use of RBPFs for dual estimation also enables us to learn

the parameters of an agent’s dynamics online. This allows us to focus on understanding high level

agent dynamics rather than low level parameter tuning.

This work focusses on the small domain of Kuhn poker. Kuhn poker provides an ideal imper-

fect information domain for testing our agent modelling approaches. Its small size, compact strategy

representation, and known equilibrium value provides a domain with interesting properties but with-

out many other difficulties that would complicate our evaluation. Although there are challenges to

using state estimation algorithms for general agent modelling, we believe that many of these chal-

lenges can be overcome. Moreover, we believe that these techniques can be effectively applied to
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larger domains including Texas Hold’em poker. The rest of this chapter will address some of these

challenges, their solutions, and directions for future work.

6.1 Challenges

Our application of state estimation techniques in Kuhn poker fails to show how to use these tech-

niques in larger domains. Scaling up our approach to larger domains presents some challenges.

6.1.1 Computational Cost

First and foremost among the challenges is the computational cost of using our particle filter and

RBPF approaches for agent modelling in “large” domains. The cost of these filters is proportional

to the number of particles used. Increasing the dimension of the state space being modelled requires

exponentially more particles to cover the space. This “curse of dimensionality” means that these

techniques cannot be used when the dimensionality of the state space becomes “large”. At this

point it is not clear how large a state space can be while remaining tractable for particle filters or

RBPFs. Previous work in robotic localization has shown that particle filters can easily model a 3

dimensional space. But how well would these techniques do in, say, a 6 dimensional space? How

many dimensions could we model before our performance suffers? The answer to this question will

depend in part on the problem domain. If domain performance is relatively insensitive to errors in

the estimated state, having a very sparse set of particles may not be a problem. Conversely, if the

performance was very sensitive, it could be disastrous.

One possible solution to this problem is that there are a number of other Bayesian filtering tech-

niques which scale up more easily. Some examples are Kalman filters, extended Kalman filters, and

sigma-point Kalman filters (unscented Kalman filters). These algorithms make limiting assump-

tions about the shape of the posterior distribution or the system’s dynamics. For instance, all of

the aforementioned examples assume the posterior distribution can be represented with a Gaussian

distribution. This assumption limits their representational power, but reduces their computational

cost so it does not grow exponentially with the dimension of the space. If the specific properties of a

problem domain make it reasonable to assume that the posterior can be approximated by a specific

distribution, such as a Gaussian, then a particle filter or RBPF may not be the best solution.

Another solution is to avoid sampling from high-dimensional state spaces. One possible way

to do this is to factor a large state space into independent low-dimensional components. The work

presented by Montemerlo and colleagues showed that they could simultaneously estimate a robot’s

position and the location of 50,000 landmarks [18]. This was possible because the parameters for

each of the landmarks were independent from each other. In this case, the size of the state space

only grows linearly with the number of parameters being estimated rather than exponentially. Al-

ternatively, one could use a low dimensional parameterization of the state space to approximate the

full state space. For example, the space of all possible strategies in Texas Hold’em poker is far too
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large to model. Instead, we could use a low dimensional parameterization of agent behaviour that

describes a likely subspace of opponent strategies. We take this approach in this thesis by using the

parameterization of undominated Kuhn poker in place of the full Kuhn poker parameterization. If a

reasonable parameterization exists in the problem domain, we can use particle filters and RBPFs to

model agents in the low dimensional parameterization rather than the full state space.

6.1.2 Using the Model in Larger Domains

Aside from the problems in forming an accurate model of an agent, there is also the question of what

to do with the resulting model. In Kuhn poker we can quickly compute our greedy best response

to a given model. In other domains it is not clear what to do with the model because computing

a response may not be tractable in real time. This problem is not specific to our agent modelling

techniques, since any modelling technique will need to address this problem, but it is still an issue

that will need to be solved when attempting to model agents in domains that are more complex than

Kuhn poker.

One possible solution to this problem comes from Johanson and colleagues’ recent progress on

computing robust counter-strategies [15]. This work examines how to compute restricted Nash re-

sponses. These responses are designed to be near equilibrium strategies that exploit other agents

while being, themselves, difficult to exploit. This technique makes the resulting responses robust to

errors in the agent model. The authors have already demonstrated the approach in Texas Hold’em

poker and their experiments show that the resulting strategies are much more robust than previous

best response techniques. Unfortunately, this technique uses linear programming to generate a re-

stricted Nash response and it cannot be run in real time on a domain as large as Texas Hold’em poker.

Despite this drawback, the technique is still useful offline for precomputing robust counter-strategies

in Texas Hold’em poker.

6.1.3 Motion Models and Agent Dynamics

As we showed in our results, simple motion models may be sufficient to achieve good results. Unfor-

tunately, it is not clear that this will be the case when attempting to model more complex dynamics.

We could improve the modelling agent’s performance if its motion model was more representative

of an agent’s true dynamics. In our domain of Kuhn poker, creating some simple non-oblivious

motion models would be an interesting next step that may yield improvements when playing non-

oblivious opponents. In general, non-oblivious models would be an asset when modelling humans

because oblivious models are unlikely to capture a human’s adaptability. Unfortunately, creating

more representative models of agent dynamics requires some knowledge about how agents change

their behaviour over time. Even in our small domain of Kuhn poker, this is difficult to describe

mathematically.

One way to create motion models that more accurately capture true dynamics is to learn the
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models from samples of agents’ behaviours. We may be able to extract general trends in agent

dynamics from such sample data. Using the extracted models in a RBPF could allow us to learn

an agent’s specific model parameters online throughout our interactions with them. Texas Hold’em

poker, for example, is an ideal domain for this approach since it is popular enough that there is

no shortage of human players willing to play the game and generate the necessary samples. Other

domains may not be able to gather samples of agent dynamics so easily.

In general, we also need to ensure that the motion models we create are computationally effi-

cient. Creating sophisticated motion models that are also efficient may be challenging since their

computational cost relies on both the complexity of the domain and the complexity of the dynamics

one intends to model. Even if we could learn an agent’s true dynamics, we may need to settle for an

efficient approximation of the dynamics if the true dynamics are too costly to duplicate.

6.1.4 Efficient Observation Models

Finally, we consider one subtlety in obtaining the models necessary for state estimation. Because of

Kuhn poker’s small size, it is computationally inexpensive to determine observation probabilities.

In more complex domains the cost of the observation model may become a problem – especially if

real-time modelling is required. Of course, a larger domain does not necessarily mean this will be a

problem. For instance, in Texas Hold’em poker it has been shown that we can compute observation

probabilities in real-time [23].

6.2 Future Work

Despite our focus on the small domain of Kuhn poker, we believe that state estimation techniques can

be effectively applied to much larger domains. Future directions for this work consist of attempting

some of the aforementioned solutions so we can use state estimation algorithms for agent modelling

in new domains.

One area of future work is extending our state estimation techniques to modelling opponents in

full Texas Hold’em. Although the size of the Texas Hold’em game tree makes some computations

prohibitive, previous work provides us with some of the pieces we need to apply our state estimation

techniques to this very complex domain. We already have a considerable amount of data for learn-

ing a human dynamics model. Furthermore, an observation model already exists [23]. Of course,

overcoming the remaining challenges described in Section 6.1 will not be trivial. For instance, even

after we learn a human dynamics model, evaluating its effectiveness and robustness against humans

will be a difficult task.

Finally, having only applied state estimation to agent modelling in Kuhn poker, it would be in-

teresting to apply these techniques for agent modelling in other domains – games or otherwise. One

possible application is to use state estimation to model biological processes such as the response of

viruses and infections to different medical treatments. More generally, there are potential applica-
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tions for agent modelling throughout the world. Applying state estimation to any of these domains

would provide more insight into the limitations of using state estimation for modelling agents. Good

performance in other domains would also provide further evidence that these techniques have a place

in the agent modelling community.

6.3 Concluding Remarks

The pervasiveness of computers in our everyday lives has resulted in an increasing number of ap-

plications that require interaction between independent agents – especially between a human and a

computer. The lack of effective modelling and inference techniques in these applications is becom-

ing more apparent. The problem of modelling agents’ goals, behaviour, and beliefs is known to be

very challenging. Although research throughout the agent modelling community has yielded many

approaches to the problem, state estimation has been largely overlooked.

This thesis presented particle filters and Rao-Blackwellized particle filters as two state estimation

algorithms and demonstrated their potential in the domain of Kuhn poker. Poker is a challenging

domain in artificial intelligence. The combination of hidden information, stochastic events and

choices, and dynamic behaviour presents many challenges to creating a good solution. Our work,

though only demonstrated in the small domain of Kuhn poker, attempts to address these challenges

in a robust and principled way. Our results show that state estimation algorithms have a place in

the agent modelling literature. Furthermore, the extensive research on state estimation algorithms in

other scientific communities (e.g. robotics) is a valuable resource that should be tapped for modelling

agents. It is our hope that this work will spark future research in using state estimation algorithms

for agent modelling problems.
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