
This is a pre-print of a copyrighted paper that will appear in 1999 AAAI Syring Symposium Search Techniques for Problem
Solving under Uncertainty and Incomplete Information.

Using Selective-Sampling Simulations in Poker

Darse Billings, Denis Papp, Lourdes Peña, Jonathan Schaeffer, Duane Szafron
Department of Computing Science

University of Alberta
Edmonton, Alberta Canada T6G 2H1

{ darse, dpapp, pena, jonathan, duane}@cs.ualberta.ca

Abstract
Until recently, AI research that used games as an experimental

testbed has concentrated on perfect information games. Many of
these games have been amenable to so-called brute-force search
techniques. In contrast, games of imperfect information, such as
bridge and poker, contain hidden knowledge making similar search
techniques impractical. This paper describes work being done on
developing a world-class poker-playing program. Part of the
program’s playing strength comes from real-time simulations. The
program generates an instance of the missing data, subject to any
constraints that have been learned, and then searches the game tree
to determine a numerical result. By repeating this a sufficient
number of times, a statistically meaningful sample can be obtained
to be used in the program’s decision–making process.

For constructing programs to play two-player deterministic
perfect information games, there is a well-defined framework based
on the alpha-beta search algorithm. For imperfect information
games, no comparable framework exists. In this paper we propose
selective sampling simulations as a general-purpose framework for
building programs to achieve high performance in imperfect
information games.

Introduction
The research efforts in computer game-playing have

concentrated on building high-performance chess
programs. With the Deep Blue victory over World Chess
Champion Garry Kasparov, a milestone has been achieved
but, more importantly, the artificial intelligence community
has been liberated from the chess “problem”. The
consequence is that in recent years a number of interesting
games have attracted the attention of AI researchers; games
whose research results promise a wider range of
applicability than has been seen for chess.

Computer success has been achieved in deterministic
perfect information games like chess, checkers and
Othello, largely due to so-called brute-force search. The
correlation of search speed to program performance gave
an easy recipe to program success: build a faster search
engine. The Deep Blue team took this to an extreme,
analyzing roughly 250 million chess positions per second.

In contrast, until recently imperfect information games
have attracted little attention in the literature. Here the
complete state is not known to any player, and a player has
to infer the missing information to maximize the chances
of success. For these games, brute-force search is not
successful since it is often impractical to search the game
trees that result from all possible instantiations of the
missing information.

Two examples of imperfect information games are
bridge and poker. Recently, at least two research groups
have made a concerted effort to achieve high-performance
bridge-playing programs [Ginsberg, 1996; Ginsberg, 1998;
Smith et al., 1998]. The progress has been impressive, and
we may not have to wait long for a world-championship
caliber program.

Until now, poker has been largely ignored by the
computing community. However, poker has a number of
attributes that make it an interesting and challenging
problem for AI research [Billings et al., 1998b].

We are attempting to build a program that is capable of
beating the best human poker players. We have chosen to
study the game of Texas Hold’em, the poker variation used
to determine the world champion in the annual World
Series of Poker. Hold’em is considered to be the most
strategically complex poker variant that is widely played.

Our program, Loki, is a reasonably strong player (as
judged by its success playing on the Internet) [Billings et
al., 1998a; Papp, 1998]. The current limitation in the
program’s play is its betting strategy: deciding when to
fold, call/check, or raise/bet. A betting strategy attempts to
determine which betting action will maximize the expected
winnings for a hand. The previous version of Loki used an
expert-knowledge evaluation function to make betting
decisions. Although this betting strategy allowed Loki to
play better than average poker, it was inadequate to play
world-class poker, since continually upgrading this
knowledge is difficult and error-prone.

Loki now bases its betting strategy on a simulation-
based approach that we call selective sampling . It simulates
the outcome of each hand, by generating opponent hands
from the sample space of all appropriate opponent hands
and tries each betting alternative to see which one produces
the highest expected winnings. A good definition of
appropriate hands is one of the key concepts in defining
selective sampling and it is one of the main topics of this
paper. With brute-force search, the search implicitly
uncovers information that can improve the quality of a
decision. With selective sampling, the quality of the sample
selection and the simulation over this sample, improves the
chances that the decision is the correct one.

In examining the literature, one finds that various forms
of simulation-based approaches have been used in
backgammon [Tesauro, 1995], bridge [Ginsberg, 1998],
Scrabble1 [Sheppard, 1998] and now poker. There are
many similarities in the methods used in all four games.
                                                                        
1 ™ of Milton-Bradley.



2

For deterministic perfect information games, there is a
well-known framework for constructing applications
(based on the alpha-beta algorithm). For games with
imperfect information, no such framework exists. For
handling this broader scope of games. we propose that
selective sampling become this framework.

Texas Hold’em
A hand of Texas Hold’em begins with the pre-flop,

where each player is dealt two hole cards face down,
followed by the first round of betting. Three community
cards are then dealt face up on the table, called the flop,
and the second round of betting occurs. On the turn, a
fourth community card is dealt face up and another round
of betting ensues. Finally, on the river, a fifth community
card is dealt face up and the final round of betting occurs.
All players still in the game turn over their two hidden
cards for the showdown. The best five card poker hand
formed from the two hole cards and the five community
cards wins the pot. If a tie occurs, the pot is split. Texas
Hold’em is typically played with 8 to 10 players.

Limit Texas Hold’em uses a structured betting system,
where the order and amount of betting is strictly controlled
in each betting round.1 There are two denominations of
bets, called the small bet and the big bet ($10 and $20 in
this paper). In the first two betting rounds, all bets and
raises are $10, while in the last two rounds they are $20. In
general, when it is a player’s turn to act, one of three
betting options is available: fold, call/check, or raise/bet.
There is normally a maximum of three raises allowed per
betting round. The betting option rotates clockwise until
each player has matched the current bet or folded. If there
is only one player remaining (all others having folded) that
player is the winner and is awarded the pot without having
to reveal their cards.

Building a Poker Program
A minimum set of requirements for a strong poker-

playing program includes hand strength, hand potential,
betting strategy, bluffing, unpredictability and opponent
modeling. What follows is a brief description of each;
implementation details for Loki can be found in [Billings et
al., 1998a; Billings et al., 1998b, Papp, 1998]. There are
several other identifiable characteristics which may not be
necessary to play reasonably strong poker, but may
eventually be required for world-class play.

Hand strength assesses how strong your hand is in
relation to the other hands. At a minimum, it is a function
of your cards and the current community cards. A better
hand strength computation takes into account the number
of players still in the game, your position at the table, and
the history of betting for the hand. An even more accurate
calculation considers the probabilities for each possible
opponent hand, based on the likelihood of each hand being
played to the current point in the game.
                                                                        
1 In No-limit Texas Hold’em, there are no restrictions on the size of bets.

Hand potential assesses the probability of a hand
improving (or being overtaken) as additional community
cards appear. For example, a hand that contains four cards
in the same suit may have a low hand strength, but has
good potential to win with a flush (five cards of the same
suit) as more community cards are dealt. At a minimum,
hand potential is a function of your cards and the current
community cards. However, a better calculation could use
all of the additional factors described in the hand strength
computation.

Betting strategy determines whether to fold,
call/check, or bet/raise in any given situation. A minimum
model is based on hand strength. Refinements consider
hand potential, pot odds (your winning chances compared
to the expected return from the pot), bluffing, opponent
modeling and unpredictable play.

Bluffing allows you to make a profit from weak hands,
and can be used to create a false impression about your
play to improve the profitability of subsequent hands.
Bluffing is essential for successful play. Game theory can
be used to compute a theoretically optimal bluffing
frequency in certain situations. A minimal bluffing system
merely bluffs this percentage of hands indiscriminately. In
practice, you should also consider other factors (such as
hand potential) and be able to predict the probability that
your opponent will fold in order to identify profitable
bluffing opportunities.

Unpredictabi l i ty  makes it difficult for opponents to
form an accurate model of your strategy. By varying your
betting strategy over time, opponents may be induced to
make mistakes based on an incorrect model.

Opponent modeling is used to determine a likely
probability distribution for each opponent’s hidden cards.
A minimal opponent model might use a single distribution
for all opponents in a given hand. The modeling can be im-
proved by modifying those probabilities based on collected
statistics and the betting history of each opponent.

Simulation-Based Betting Strategy
The original betting strategy consisted of expert-defined

rules, based on hand strength, hand potential, game
conditions, and probabilities. A professional poker player
(Billings) defined the system as a first approximation of the
return on investment for each betting decision. As other
aspects of Loki improved, this simplistic betting strategy
became the limiting factor to the playing strength of the
program. Unfortunately, any rule-based system is
inherently rigid, and even simple changes were difficult to
implement and verify for correctness. A more flexible,
computer-oriented approach was needed.

In effect, this knowledge-based betting strategy is
equivalent to a static evaluation function. Given the current
state of the game, it attempts to determine the action that
yields the best result. If we use deterministic perfect
information games as a model, the obvious extension is to
add search to the evaluation function. While this is easy to
achieve in a perfect-information game such as chess, the



3

same approach is not feasible for imperfect information
games because there are too many possibilities to consider.

Consider a 10-player game of Texas Hold’em. By the
time the flop cards are seen, some players may have folded.
Let’s assume one player bets, and it is Loki’s turn to act.
The program must choose between folding (no further
financial investment), calling ($10 to match the outstanding
bet), or raising ($10 to call, plus an additional $10). Which
one is the best decision?1

After the program’s decision, every other active player
will be faced with a similar choice. In effect, there is a
branching factor of 3 possible actions for each player, and
there may be several such decisions in each betting round.
Further, there are still two betting rounds to come, each of
which may involve several players, and one of many (45 or
44) unknown cards. Computing the complete poker
decision tree is, in general, a prohibitively expensive
computation. Since we cannot consider all possible
combinations of hands, future cards, and actions, we
examine only an appropriate representative sample from
the possibilities. The larger the sample, and the more
informed the selection process, the higher the probability
that we can draw meaningful conclusions.

An Expected Value Based Betting Strategy
Loki’s new betting strategy consists of playing out many

likely scenarios to determine how much money each
decision will win or lose. Every time it faces a decision,
Loki performs a simulation to get an estimate of the
expected value (EV) of each betting action. A simulation
consists of playing out the hand a specified number of
times, from the current state of the game through to the
end. Folding is considered to have a zero EV, because we
do not make any future profit or loss. Each trial is played
out twice—once to consider the consequences of a
check/call and once to consider a bet/raise. In each case the
hand is simulated to the end, and the amount of money won
or lost is determined. The average over all of the trials is
taken as the EV of each action. In the current
implementation we simply choose the action with the
greatest expectation. If two actions have the same
expectation, we opt for the most aggressive one (call over
fold and raise over call). Against human opponents, a
better strategy is to randomize the selection of betting
actions whose EVs are close in value.

Simulation is analogous to a selective expansion of some
branches of a game tree. To get a good approximation of
the expected value of each betting action, one must have a
preference for expanding and evaluating the nodes which
are most likely to occur. To select the most probable hands
that our opponents may have, we use selective sampling.

Selective Sampling
When we do the simulation, we have specific

information that can be used to bias the selection of cards
(i.e. sample selectively). For example, a player who has
                                                                        
1 “Best” is subjective. Here we do not consider other plays, such as
deliberately misrepresenting the hand to the opponents.

been raising the stakes is more likely to have a strong hand
than a player who has just called every bet. For each
opponent, Loki maintains a probability distribution over
the entire set of possible hands, and the random generation
of each opponent’s two card hand is based on those
probabilities.

At each node in the decision tree, a player must choose
between one of three alternatives. Since the choice is
strongly correlated to the quality of the cards that they
have, we have a routine, ProbTriple(), which computes
the likelihood that the player will fold, check/call, or
bet/raise based on the hand that was generated for that
player. The player's action is then randomly selected, based
on the probability distribution defined by this triple, and
the simulation proceeds.

Probability triples
To play out a simulated game, we need to predict how an

opponent will play in any particular situation. This is not
necessarily deterministic, so we want to predict the
probability that they will fold, check/call, or bet/raise. This
mixed strategy is represented as a triple [f,c,r], f+c+r = 1.0,
and is computed by the routine ProbTriple(). This is, in
effect, a static evaluation function, and could be used as a
complete (non-deterministic) betting strategy.

For the purpose of the simulations, it is not essential to
predict the exact action the opponent will take in every
case. An error will not be serious provided that the selected
action results in a similar computed EV. For example, in a
particular situation whether an opponent calls or raises may
result in a very similar EV for us. In this case, it will not
adversely affect the computation to assume that the
opponent will always call. However, the better we are able
to predict the opponent’s actual behavior, the better we can
exploit strategic weaknesses.

Loki does opponent modeling, meaning that it gathers
historical data on how each opponent plays [Billings et al.,
1998a]. This information has been used in the calculation
of hand strength and potential by appropriately skewing the
probability of each possible opponent hand. The
ProbTriple()  routine can also facilitate opponent
modeling, but now we can distinguish not only what hands
an opponent is likely to play, but also how they will play
them. For example, Loki can measure the aggressiveness of
each player, and use this information to make better
inferences about the implications of each observed action.

The future behavior of an opponent is, strictly speaking,
unknowable. Predicting how they will play their hand is a
subjective assessment, and may be more successful for
some players than others. We wish to separate the
subjective (but necessary) elements of poker from the
objective aspects. By doing so, we can make the program
structure (e.g. alpha-beta framework in perfect-information
games) orthogonal to the application-dependent knowledge
(the evaluation function).



4

Results
The number of trials per simulation is chosen to meet

real-time constraints and statistical significance. In our
experiments, we performed 500 trials per simulation, since
the EVs obtained after 500 trials are quite stable. The
average absolute difference in EV after 500 trials and after
2000 trials is small and rarely results in a significant
change in an assessment. The difference between 100 trials
and 500 trials was much more significant; the variance
with 100 trials is far too high.

To reduce the overall number of trials per simulation, we
stop the simulation early if an obvious action is found. We
currently define an obvious action as any action where the
separation between the EV of the best action and the EV of
the second best action is greater than the sum of the
standard deviations of the EVs. This criterion for an
obvious action is extremely conservative, and results in
declaring fewer than 5% of actions as obvious. More
liberal criteria for distinguishing obvious moves need to be
tested to produce more frequent cutoffs while retaining an
acceptable margin of error.

Adding simulation to our best version of Loki improves
the program’s performance (as judged by computer self-
play, which may not be representative of play with
humans). Taking our old betting strategy and using it in the
simulations results in a program that wins, on average
$1,075 more per 1,000 hands of $10/$20 poker. The extra
winnings of roughly $1 per hand represent a large increase,
as judged by human poker player standards.

The above experiment did not use the ProbTriple()
facility, since the old betting strategy returns a decision
(fold, call/check, bet/raise) as opposed to probabilities for
each.  We have implemented a simple, fast routine for
ProbTriple()  (less than one page of code). Using it in
the simulations causes the program to win an average of
$880 per 1,000 hands, as compared to our best non-
simulation program. This is encouraging, since even with a
naïve betting strategy, the simulations magnify the results
to produce something credible. We are working on
improving this routine to do a better job generating
probabilities, while maintaining its significant speed
advantage over our old betting routine.

Loki plays on the Internet (on irc.poker). In the near
future we will replace the current version of Loki that is
playing with a new simulation-based version.

Comments
It should be obvious that the simulation approach must

be better than the static approach, since it uses a selective
search to augment and refine a static evaluation function.
Playing out relevant scenarios can only improve the default
values obtained by heuristics, resulting in a more accurate
estimate.

As has been seen in other search algorithms, the search
itself contains implicit knowledge. A simulation contains
inherent information that improves the basic evaluation:
hand strength (fraction of trials where our hand is better

than the one assigned to the opponent), hand potential
(fraction of trials where our hand improves to the best, or is
overtaken), and subtle implications not addressed in the
simplistic betting strategy (e.g. “implied odds”—extra bets
won after a successful draw). In effect, the simulated
search magnifies the quality of the results.

A simulation-based approach has the advantage of
simplifying the expert knowledge required to achieve high
performance. This is similar to what has been observed in
two-player games, where deep search compensates for
limited knowledge. It also has the advantage of isolating
the expert knowledge into a single function. In effect, the
probability triple routine is viewed as a black box by the
EV engine; only the poker expert has to deal with its
internals. Since the more objective aspects of the game can
eventually be well-solved, the ultimate strength of the
program may depend on the success in handling imperfect
information, and the more nebulous aspects of the game,
such as opponent modeling.

A Framework for Non-Determinist ic
Game-Playing Programs

Using simulations for imperfect information games is
not new. Consider the following three games:
1 In Scrabble, the opponent’s tiles are unknown, but this is

constrained by the tiles in the computer’s hand and those
that have appeared on the board. A simulation consists of
repeatedly generating a plausible set of tiles for the
opponent. Then each trial consists of a 2 to 4 ply search
of the game tree, trying to determine which move for the
computer leads to the maximum number of points
[Sheppard, 1998]. A simulation-based approach has been
used for a long time in Scrabble programs. Brian
Sheppard, the author of the Scrabble program Maven,
coined the term “simulator” for this type of game-
playing program structure.

2 In backgammon, “rollouts” of certain positions are done
by simulation, and are now generally regarded as the best
available estimates for the equity of a given position. The
unknown element is the non-deterministic dice rolls. A
simulation consists of generating a series of dice rolls,
playing through to the end of the game, and then
recording the result [Tesauro, 1995].

3 In bridge, the hidden information is the cards that each
player has. A simulation consists of dealing cards to the
opponents in a manner that is consistent with the
bidding. The hand is then played out and the result
determined. Repeated deals are played until enough
confidence has been gained to decide which card to play
[Ginsberg, 1996; Ginsberg, 1998].
In the above examples, the programs are not using

Monte Carlo sampling to generate hidden information: they
use selective sampling, sampling biased towards taking
advantage of all the available information. We want to
distinguish selective sampling from traditional Monte
Carlo techniques, in that we are using information about
the game state to skew the underlying probability



5

distribution, rather than assuming uniform or other fixed
probability distributions. Monte Carlo techniques may
eventually converge on the right answer, but selective
sampling allows for faster convergence and less variance.

Two examples illustrate this point (besides the poker
example discussed earlier). First, the Scrabble program
Maven does not randomly assign 7 of the remaining
unknown tiles to the opponent. Instead, it biases its choice
to give the opponent a “nice” hand [Sheppard, 1998].
Strong players like to have a balanced hand with lots of
potential; a random assignment of letters does not achieve
that. Second, in bridge the assignment of cards to an
opponent should be subject to any information obtained
from the bidding. If one opponent has indicated point
strength, then the assignment of cards to that opponent
should reflect this information [Ginsberg, 1998].

The alpha-beta framework has proven to be an effective
tool for the design of two-player, zero-sum, deterministic
games with perfect information. It has been around for over
30 years, and in that time the basic structure has not
changed much, although there have been numerous
algorithmic enhancements to improve the search
efficiency. Figure 1 illustrates this framework. It has the
following properties:
1 The program usually iterates on the search depth

(iterative deepening).
2 The search has full breadth, but limited depth.
3 Heuristic evaluation usually occurs at the leaf nodes of

the search.
4  All interior node alternatives are usually considered,

except those that can be logically eliminated (such as
alpha-beta cutoffs).

search_depth = 0;
pos = current_state_of_the_game;
while( ( search_depth <= MAX_DEPTH ) and
             ( resources remaining ) )
{
  search_depth = search_depth + 1;
  for( each legal move m )
  {
    score[m] = AlphaBeta( pos.m, search_depth );
  }
  best = max( score[] );
}
play move best;

Figure 1. Framework for two-player, zero-sum,
perfect information games.

The search gathers confidence in its move choice by
searching deeper along each line. Figure 2a) shows where
in the search the evaluations occur. The deeper the search,
the greater the confidence in the move choice, although
diminishing returns quickly takes over.  There is usually no
statistical evidence to support the choice of best move. The
alpha-beta algorithm is designed to identify a “best” move,
and not differentiate between any other moves. Hence, the
selection of the best move may be brittle, in that a single
node misevaluation can propagate to the root of the search
and alter the best move choice.

In an imperfect information game, it is often impractical
to build the entire game tree of all possibilities [Koller and
Pfeffer, 1997]. This is especially true for poker because of
multiple opponents and the number of cards in the deck.
One instance of the imperfect and non-deterministic
information is applied to each specific trial. Hence, a
representative sample of the search space is looked at to
gather statistical evidence on which move is best. Figure 3
shows the pseudo-code for this approach. Some
characteristics of this approach include:
1 The program iterates on the number of samples taken.
2 The search done for each sample usually goes to the end

of the game. For poker, leaf node evaluations can be the
game result.

3 The search is often full depth. In poker, the search goes
to the end of the game, but in backgammon this is
impractical.

4 Heuristic evaluation usually occurs at the interior nodes
of the search to determine the appropriate opponent
actions and our action.

5  Usually a subset of interior node alternatives are
considered, to reduce the cost of a sample. In poker, we
consider a single action at each opponent’s turn.
The simulation benefits from selective samples that use

information from the game state (i.e. are context sensitive),
rather than a uniform distribution or other fixed distribution
sampling technique.

Figure 2. Comparing two different search frameworks.
 

Similar to alpha-beta, confidence in the answer increases
as more nodes are evaluated. However, diminishing returns
take over after a statistically significant number of trials
have been performed. Selective sampling greatly reduces



6

the number of nodes to search, just as cutoffs reduces the
search tree size for alpha-beta.

For poker, each sample taken increases the program’s
confidence in the EV for that betting decision. The
program is not only sampling the distribution of opponent
hands. Since it considers only one opponent action at each
decision point, it is also sampling part of the decision tree.
Figure 2b) illustrates the portion of the total search space
explored by Loki (or by any other game that always
simulates to leaf nodes).

obvious_move = NO;
trials = 0;
while( ( trials <= MAX_TRIALS ) and
         ( obvious_move == NO ) )
{
  trials = trials + 1;
  Pos = current_state_of_the_game +
        ( selective_sampling to
          generate_missing_information );
  for( each legal move m )
  {
    value[m] += Search( pos.m, info );
  }
  if( ∃ i such that
       value[ i ] >> value[ j ]( ∀j, j ≠ i ) )
  {
    obvious_move = YES;
  }
}
select decision based on value[];

Figure 3. Framework for two-player, zero-sum,
imperfect information games.

An important feature of the simulation-based framework
is the notion of an obvious move. Although many alpha-
beta-based programs incorporate an obvious move feature,
the technique is usually ad hoc and the heuristic is the
result of programmer experience rather than a sound
analytic technique (an exception is the B* proof procedure
[Berliner, 1979]). In the simulation-based framework, an
obvious move is statistically well-defined. As more
samples are taken, if one decision point exceeds the
alternatives by a statistically significant margin, one can
stop the simulation early and make an action, with full
knowledge of the statistical validity of the decision choice.

At the heart of the simulation is an evaluation function.
The better the quality of the evaluation function, the better
the simulation results will be. One of the interesting results
of work on alpha-beta has been that even a simple
evaluation function can result in a powerful program. We
see a similar situation in poker. The implicit knowledge
contained in the search improves the basic evaluation,
magnifying the quality of the search. As with alpha-beta,
there are tradeoffs. A more sophisticated evaluation
function can improve the quality of the search (simulation),
at the cost of reducing the size of the tree (number of
samples). Finding the right balance between the cost per
trial and the number of trials is an interesting problem.

Conclusions
A simulation-based betting strategy for poker appears to

be superior to the static evaluation-based alternative. The

success of our approach depends on the quality of the
ProbTriple() routine, which contains the expert’s
knowledge. However, even our crude initial ProbTriple()
routine is better than our best, hand-tuned betting strategy.
We are still in the early stages of our work, and the
probability triple generating routine is still primitive. We
believe that significant gains can be made by improving
this routine, and refining the selection methods to use more
game-state information.

This paper proposes that the selective sampling
simulation-based framework should become a standard
technique for games having elements of non-determinism
and imperfect information. This powerful method gathers
statistical evidence to compensate for a lack of
information. Selective sampling is important for increasing
the quality of the information obtained.

While the notion of simulation-based selective sampling
is not new to game-playing program developers, it is a
technique that is repeatedly discovered. This technique
needs to be recognized as a fundamental tool for
developing not only game-playing programs, but many
other applications that deal with imperfect information.

Acknowledgments
This research was supported by the Natural Sciences and

Engineering Council of Canada.

References

H. Berliner, 1979. “The B* Tree Search Algorithm: A
Best First proof Procedure”, Artificial Intelligence, vol. 12,
no. 1, pp. 23-40.

D. Billings, D. Papp, J. Schaeffer and D. Szafron, 1998a.
“Opponent Modeling in Poker”, AAAI, pp. 493-499.

D. Billings, D. Papp, J. Schaeffer and D. Szafron, 1998b.
“Poker as a Testbed for Machine Intelligence Research”, in
Advances in Artificial Intelligence (R. Mercer and E.
Neufeld, eds.), Springer Verlag, pp. 1-15.

M. Ginsberg, 1996. “Partition Search”, AAAI, pp. 228-
233.

M. Ginsberg, 1998. “GIB: Steps Towards an Expert-
Level Bridge-Playing Program”, unpublished manuscript.

D. Koller and A. Pfeffer, 1997. “Representations and
Solutions for Game-Theoretic Problems,” Artificial
Intelligence 94(1-2), 167-215.

D. Papp, 1998. “Dealing with Imperfect Information in
Poker”, M.Sc. thesis, Department of Computing Science,
University of Alberta.

B. Sheppard, 1998. Email, October 23, 1998.

S. Smith, D. Nau, and T. Throop, 1998. “Computer
Bridge: A Big Win for AI Planning”, AI Magazine, vol. 19,
no. 2, pp. 93-106.

G. Tesauro, 1995. “Temporal Difference Learning and
TD-Gammon”, CACM, vol. 38, no.3, pp. 58-68.


