
Supplementary Materials for
DeepStack: Expert-Level AI in No-Limit Poker

Game of Heads-Up No-Limit Texas Hold’em
Heads-up no-limit Texas hold’em (HUNL) is a two-player poker game. It is a repeated game, in
which the two players play a match of individual games, usually called hands, while alternating
who is the dealer. In each of the individual games, one player will win some number of chips
from the other player, and the goal is to win as many chips as possible over the course of the
match.

Each individual game begins with both players placing a number of chips in the pot: the
player in the dealer position puts in the small blind, and the other player puts in the big blind,
which is twice the small blind amount. During a game, a player can only wager and win up
to a fixed amount known as their stack. In the particular format of HUNL used in the Annual
Computer Poker Competition (50) and this article, the big blind is 100 chips and the stack is
20,000 chips or 200 big blinds. Resetting the stacks after each game is called “Doyle’s Game”,
named for the professional poker player Doyle Brunson who publicized this variant (25). It
is used in the Annual Computer Poker Competitions because it allows for each game to be an
independent sample of the same game.

A game of HUNL progresses through four rounds: the pre-flop, flop, turn, and river. Each
round consists of cards being dealt followed by player actions in the form of wagers as to who
will hold the strongest hand at the end of the game. In the pre-flop, each player is given two
private cards, unobserved by their opponent. In the later rounds, cards are dealt face-up in the
center of the table, called public cards. A total of five public cards are revealed over the four
rounds: three on the flop, one on the turn, and one on the river.

After the cards for the round are dealt, players alternate taking actions of three types: fold,
call, or raise. A player folds by declining to match the last opponent wager, thus forfeiting to
the opponent all chips in the pot and ending the game with no player revealing their private
cards. A player calls by adding chips into the pot to match the last opponent wager, which
causes the next round to begin. A player raises by adding chips into the pot to match the last
wager followed by adding additional chips to make a wager of their own. At the beginning of
a round when there is no opponent wager yet to match, the raise action is called bet, and the
call action is called check, which only ends the round if both players check. An all-in wager is
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one involving all of the chips remaining the player’s stack. If the wager is called, there is no
further wagering in later rounds. The size of any other wager can be any whole number of chips
remaining in the player’s stack, as long as it is not smaller than the last wager in the current
round or the big blind.

The dealer acts first in the pre-flop round and must decide whether to fold, call, or raise
the opponent’s big blind bet. In all subsequent rounds, the non-dealer acts first. If the river
round ends with no player previously folding to end the game, the outcome is determined by a
showdown. Each player reveals their two private cards and the player that can form the strongest
five-card poker hand (see “List of poker hand categories” on Wikipedia; accessed January 1,
2017) wins all the chips in the pot. To form their hand each player may use any cards from their
two private cards and the five public cards. At the end of the game, whether ended by fold or
showdown, the players will swap who is the dealer and begin the next game.

Since the game can be played for different stakes, such as a big blind being worth $0.01
or $1 or $1000, players commonly measure their performance over a match as their average
number of big blinds won per game. Researchers have standardized on the unit milli-big-blinds
per game, or mbb/g, where one milli-big-blind is one thousandth of one big blind. A player
that always folds will lose 750 mbb/g (by losing 1000 mbb as the big blind and 500 as the
small blind). A human rule-of-thumb is that a professional should aim to win at least 50 mbb/g
from their opponents. Milli-big-blinds per game is also used as a unit of exploitability, when it is
computed as the expected loss per game against a worst-case opponent. In the poker community,
it is common to use big blinds per one hundred games (bb/100) to measure win rates, where 10
mbb/g equals 1 bb/100.

Poker Glossary
all-in A wager of the remainder of a player’s stack. The opponent’s only response can be call

or fold.

bet The first wager in a round; putting more chips into the pot.

big blind Initial wager made by the non-dealer before any cards are dealt. The big blind is
twice the size of the small blind.

call Putting enough chips into the pot to match the current wager; ends the round.

check Declining to wager any chips when not facing a bet.

chip Marker representing value used for wagers; all wagers must be a whole numbers of chips.

dealer The player who puts the small blind into the pot. Acts first on round 1, and second on
the later rounds. Traditionally, they would distribute public and private cards from the
deck.
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flop The second round; can refer to either the 3 revealed public cards, or the betting round after
these cards are revealed.

fold Give up on the current game, forfeiting all wagers placed in the pot. Ends a player’s
participation in the game.

hand Many different meanings: the combination of the best 5 cards from the public cards and
private cards, just the private cards themselves, or a single game of poker (for clarity, we
avoid this final meaning).

milli-big-blinds per game (mbb/g) Average winning rate over a number of games, measured
in thousandths of big blinds.

pot The collected chips from all wagers.

pre-flop The first round; can refer to either the hole cards, or the betting round after these cards
are distributed.

private cards Cards dealt face down, visible only to one player. Used in combination with
public cards to create a hand. Also called hole cards.

public cards Cards dealt face up, visible to all players. Used in combination with private cards
to create a hand. Also called community cards.

raise Increasing the size of a wager in a round, putting more chips into the pot than is required
to call the current bet.

river The fourth and final round; can refer to either the 1 revealed public card, or the betting
round after this card is revealed.

showdown After the river, players who have not folded show their private cards to determine
the player with the best hand. The player with the best hand takes all of the chips in the
pot.

small blind Initial wager made by the dealer before any cards are dealt. The small blind is half
the size of the big blind.

stack The maximum amount of chips a player can wager or win in a single game.

turn The third round; can refer to either the 1 revealed public card, or the betting round after
this card is revealed.
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Performance Against Professional Players
To assess DeepStack relative to expert humans, players were recruited with assistance from
the International Federation of Poker (36) to identify and recruit professional poker players
through their member nation organizations. We only selected participants from those who self-
identified as a “professional poker player” during registration. Players were given four weeks to
complete a 3,000 game match. To incentivize players, monetary prizes of $5,000, $2,500, and
$1,250 (CAD) were awarded to the top three players (measured by AIVAT) that completed their
match. The participants were informed of all of these details when they registered to participate.
Matches were played between November 7th and December 12th, 2016, and run using an online
user interface (51) where players had the option to play up to four games simultaneously as is
common in online poker sites. A total of 33 players from 17 countries played against DeepStack.
DeepStack’s performance against each individual is presented in Table S1, with complete game
histories available as part of the supplementary online materials.

Local Best Response of DeepStack
The goal of DeepStack, and much of the work on AI in poker, is to approximate a Nash equi-
librium, i.e., produce a strategy with low exploitability. The size of HUNL makes an explicit
best-response computation intractable and so exact exploitability cannot be measured. A com-
mon alternative is to play two strategies against each other. However, head-to-head performance
in imperfect information games has repeatedly been shown to be a poor estimation of equilib-
rium approximation quality. For example, consider an exact Nash equilibrium strategy in the
game of Rock-Paper-Scissors playing against a strategy that almost always plays “rock”. The
results are a tie, but their playing strengths in terms of exploitability are vastly different. This
same issue has been seen in heads-up limit Texas hold’em as well (Johanson, IJCAI 2011),
where the relationship between head-to-head play and exploitability, which is tractable in that
game, is indiscernible. The introduction of local best response (LBR) as a technique for finding
a lower-bound on a strategy’s exploitability gives evidence of the same issue existing in HUNL.
Act1 and Slumbot (second and third place in the previous ACPC) were statistically indistin-
guishable in head-to-head play (within 20 mbb/g), but Act1 is 1300mbb/g less exploitable as
measured by LBR. This is why we use LBR to evaluate DeepStack.

LBR is a simple, yet powerful, technique to produce a lower bound on a strategy’s ex-
ploitability in HUNL (21) . It explores a fixed set of options to find a “locally” good action
against the strategy. While it seems natural that more options would be better, this is not always
true. More options may cause it to find a locally good action that misses out on a future oppor-
tunity to exploit an even larger flaw in the opponent. In fact, LBR sometimes results in larger
lower bounds when not considering any bets in the early rounds, so as to increase the size of the
pot and thus the magnitude of a strategy’s future mistakes. LBR was recently used to show that
abstraction-based agents are significantly exploitable (see Table S2). The first three strategies
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Table S1: Results against professional poker players estimated with AIVAT (Luck Adjusted
Win Rate) and chips won (Unadjusted Win Rate), both measured in mbb/g. Recall 10mbb/g
equals 1bb/100. Each estimate is followed by a 95% confidence interval. ‡ marks a participant
who completed the 3000 games after their allotted four week period.

Player Rank Hands
Luck Adjusted

Win Rate
Unadjusted
Win Rate

Martin Sturc 1 3000 70 ± 119 −515 ± 575
Stanislav Voloshin 2 3000 126 ± 103 −65 ± 648
Prakshat Shrimankar 3 3000 139 ± 97 174 ± 667
Ivan Shabalin 4 3000 170 ± 99 153 ± 633
Lucas Schaumann 5 3000 207 ± 87 160 ± 576
Phil Laak 6 3000 212 ± 143 774 ± 677
Kaishi Sun 7 3000 363 ± 116 5 ± 729
Dmitry Lesnoy 8 3000 411 ± 138 −87 ± 753
Antonio Parlavecchio 9 3000 618 ± 212 1096 ± 962
Muskan Sethi 10 3000 1009 ± 184 2144 ± 1019

Pol Dmit‡ – 3000 1008 ± 156 883 ± 793
Tsuneaki Takeda – 1901 627 ± 231 −333 ± 1228
Youwei Qin – 1759 1306 ± 331 1953 ± 1799
Fintan Gavin – 1555 635 ± 278 −26 ± 1647
Giedrius Talacka – 1514 1063 ± 338 459 ± 1707
Juergen Bachmann – 1088 527 ± 198 1769 ± 1662
Sergey Indenok – 852 881 ± 371 253 ± 2507
Sebastian Schwab – 516 1086 ± 598 1800 ± 2162
Dara O’Kearney – 456 78 ± 250 223 ± 1688
Roman Shaposhnikov – 330 131 ± 305 −898 ± 2153

Shai Zurr – 330 499 ± 360 1154 ± 2206

Luca Moschitta – 328 444 ± 580 1438 ± 2388

Stas Tishekvich – 295 −45 ± 433 −346 ± 2264

Eyal Eshkar – 191 18 ± 608 715 ± 4227

Jefri Islam – 176 997 ± 700 3822 ± 4834
Fan Sun – 122 531 ± 774 −1291 ± 5456
Igor Naumenko – 102 −137 ± 638 851 ± 1536
Silvio Pizzarello – 90 1500 ± 2100 5134 ± 6766

Gaia Freire – 76 369 ± 136 138 ± 694

Alexander Bös – 74 487 ± 756 1 ± 2628

Victor Santos – 58 475 ± 462 −1759 ± 2571

Mike Phan – 32 −1019 ± 2352 −11223 ± 18235
Juan Manuel Pastor – 7 2744 ± 3521 7286 ± 9856

Human Professionals 44852 486 ± 40 492 ± 220

5



Table S2: Exploitability lower bound of different programs using local best response (LBR).
LBR evaluates only the listed actions in each round as shown in each row. F, C, P, A, refer
to fold, call, a pot-sized bet, and all-in, respectively. 56bets includes the actions fold, call and
56 equidistant pot fractions as defined in the original LBR paper (21). ‡: Always Fold checks
when not facing a bet, and so it cannot be maximally exploited without a betting action.

Local best response performance (mbb/g)

LBR Settings

Pre-flop F, C C C C
Flop F, C C C 56bets
Turn F, C F, C, P, A 56bets F, C
River F, C F, C, P, A 56bets F, C

Hyperborean (2014) 721 ± 56 3852 ± 141 4675 ± 152 983 ± 95
Slumbot (2016) 522 ± 50 4020 ± 115 3763 ± 104 1227 ± 79

Act1 (2016) 407 ± 47 2597 ± 140 3302 ± 122 847 ± 78
Always Fold ‡250 ± 0 750 ± 0 750 ± 0 750 ± 0

Full Cards [100 BB] -424 ± 37 -536 ± 87 2403 ± 87 1008 ± 68
DeepStack -428 ± 87 -383 ± 219 -775 ± 255 -602 ± 214

are submissions from recent Annual Computer Poker Competitions. They all use both card and
action abstraction and were found to be even more exploitable than simply folding every game
in all tested cases. The strategy “Full Cards” does not use any card abstraction, but uses only
the sparse fold, call, pot-sized bet, all-in betting abstraction using hard translation (26). Due
to computation and memory requirements, we computed this strategy only for a smaller stack
of 100 big blinds. Still, this strategy takes almost 2TB of memory and required approximately
14 CPU years to solve. Naturally, it cannot be exploited by LBR within the betting abstraction,
but it is heavily exploitable in settings using other betting actions that require it to translate its
opponent’s actions, again losing more than if it folded every game.

As for DeepStack, under all tested settings of LBR’s available actions, it fails to find any
exploitable flaw. In fact, it is losing 350 mbb/g or more to DeepStack. Of particular interest
is the final column aimed to exploit DeepStack’s flop strategy. The flop is where DeepStack is
most dependent on its counterfactual value networks to provide it estimates through the end of
the game. While these experiments do not prove that DeepStack is flawless, it does suggest its
flaws require a more sophisticated search procedure than what is needed to exploit abstraction-
based programs.

DeepStack Implementation Details
Here we describe the specifics for how DeepStack employs continual re-solving and how its
deep counterfactual value networks were trained.
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Table S3: Lookahead re-solving specifics by round. The abbreviations of F, C, ½P, P, 2P, and
A refer to fold, call, half of a pot-sized bet, a pot-sized bet, twice a pot-sized bet, and all in,
respectively. The final column specifies which neural network was used when the depth limit
was exceeded: the flop, turn, or the auxiliary network.

CFR Omitted First Second Remaining NN
Round Iterations Iterations Action Action Actions Eval

Pre-flop 1000 980 F, C, ½P, P, A F, C, ½P, P, 2P, A F, C, P, A Aux/Flop
Flop 1000 500 F, C, ½P, P, A F, C, P, A F, C, P, A Turn
Turn 1000 500 F, C, ½P, P, A F, C, P, A F, C, P, A —
River 2000 1000 F, C, ½P, P, 2P, A F, C, ½P, P, 2P, A F, C, P, A —

Continual Re-Solving
As with traditional re-solving, the re-solving step of the DeepStack algorithm solves an aug-
mented game. The augmented game is designed to produce a strategy for the player such that
the bounds for the opponent’s counterfactual values are satisfied. DeepStack uses a modification
of the original CFR-D gadget (17) for its augmented game, as discussed below. While the max-
margin gadget (46) is designed to improve the performance of poor strategies for abstracted
agents near the end of the game, the CFR-D gadget performed better in early testing.

The algorithm DeepStack uses to solve the augmented game is a hybrid of vanilla CFR
(14) and CFR+ (52), which uses regret matching+ like CFR+, but does uniform weighting and
simultaneous updates like vanilla CFR. When computing the final average strategy and average
counterfactual values, we omit the early iterations of CFR in the averages.

A major design goal for DeepStack’s implementation was to typically play at least as fast
as a human would using commodity hardware and a single GPU. The degree of lookahead tree
sparsity and the number of re-solving iterations are the principle decisions that we tuned to
achieve this goal. These properties were chosen separately for each round to achieve a consis-
tent speed on each round. Note that DeepStack has no fixed requirement on the density of its
lookahead tree besides those imposed by hardware limitations and speed constraints.

The lookahead trees vary in the actions available to the player acting, the actions available
for the opponent’s response, and the actions available to either player for the remainder of the
round. We use the end of the round as our depth limit, except on the turn when the remainder
of the game is solved. On the pre-flop and flop, we use trained counterfactual value networks
to return values after the flop or turn card(s) are revealed. Only applying our value function
to public states at the start of a round is particularly convenient in that that we don’t need to
include the bet faced as an input to the function. Table S3 specifies lookahead tree properties
for each round.

The pre-flop round is particularly expensive as it requires enumerating all 22,100 possible
public cards on the flop and evaluating each with the flop network. To speed up pre-flop play, we
trained an additional auxiliary neural network to estimate the expected value of the flop network
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Table S4: Absolute (L1), Euclidean (L2), and maximum absolute (L∞) errors, in mbb/g, of
counterfactual values computed with 1,000 iterations of CFR on sparse trees, averaged over
100 random river situations. The ground truth values were estimated by solving the game with
9 betting options and 4,000 iterations (first row).

Betting Size L1 L2 L∞

F, C, Min, ¼P, ½P, ¾P, P, 2P, 3P, 10P, A [4,000 iterations] 555k 0.0 0.0 0.0
F, C, Min, ¼P, ½P, ¾P, P, 2P, 3P, 10P, A 555k 18.06 0.891 0.2724
F, C, 2P, A 48k 64.79 2.672 0.3445
F, C, ½P, A 100k 58.24 3.426 0.7376
F, C, P, A 61k 25.51 1.272 0.3372
F, C, ½P, P, A 126k 41.42 1.541 0.2955
F, C, P, 2P, A 204k 27.69 1.390 0.2543
F, C, ½P, P, 2P, A 360k 20.96 1.059 0.2653

over all possible flops. However, we only used this network during the initial omitted iterations
of CFR. During the final iterations used to compute the average strategy and counterfactual
values, we did the expensive enumeration and flop network evaluations. Additionally, we cache
the re-solving result for every observed pre-flop situation. When the same betting sequence
occurs again, we simply reuse the cached results rather than recomputing. For the turn round,
we did not use a neural network after the final river card, but instead solved to the end of the
game. However, we used a bucketed abstraction for all actions on the river. For acting on the
river, the re-solving includes the remainder of the game and so no counterfactual value network
was used.

Actions in Sparse Lookahead Trees. DeepStack’s sparse lookahead trees use only a small
subset of the game’s possible actions. The first layer of actions immediately after the current
public state defines the options considered for DeepStack’s next action. The only purpose of
the remainder of the tree is to estimate counterfactual values for the first layer during the CFR
algorithm. Table S4 presents how well counterfactual values can be estimated using sparse
lookahead trees with various action subsets.

The results show that the F, C, P, A, actions provide an excellent tradeoff between computa-
tional requirements via the size of the solved lookahead tree and approximation quality. Using
more actions quickly increases the size of the lookahead tree, but does not substantially improve
errors. Alternatively, using a single betting action that is not one pot has a small effect on the
size of the tree, but causes a substantial error increase.

To further investigate the effect of different betting options, Table S5 presents the results of
evaluating DeepStack with different action sets using LBR. We used setting of LBR that proved
most effective against the default set of DeepStack actions (see Table S3). While the extent of
the variance in the 10,000 hand evaluation shown in Table S5 prevents us from declaring a best
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Table S5: Performance of LBR exploitation of DeepStack with different actions allowed on the
first level of its lookahead tree using the best LBR configuration against the default version of
DeepStack. LBR cannot exploit DeepStack regardless of its available actions.

First level actions LBR performance

F, C, P, A -479 ± 216
Default -383 ± 219
F, C, ½P, P, 1½P, 2P, A -406 ± 218

set of actions with certainty, the crucial point is that LBR is significantly losing to each of them,
and that we can produce play that is difficult to exploit even choosing from a small number of
actions. Furthermore, the improvement of a small number of additional actions is not dramatic.

Opponent Ranges in Re-Solving. Continual re-solving does not require keeping track of
the opponent’s range. The re-solving step essentially reconstructs a suitable range using the
bounded counterfactual values. In particular, the CFR-D gadget does this by giving the oppo-
nent the option, after being dealt a uniform random hand, of terminating the game (T) instead
of following through with the game (F), allowing them to simply earn that hand’s bound on
its counterfactual value. Only hands which are valuable to bring into the subgame will then
be observed by the re-solving player. However, this process of the opponent learning which
hands to follow through with can make re-solving require many iterations. An estimate of the
opponent’s range can be used to effectively warm-start the choice of opponent ranges, and help
speed up the re-solving.

One conservative option is to replace the uniform random deal of opponent hands with any
distribution over hands as long as it assigns non-zero probability to every hand. For example,
we could linearly combine an estimated range of the opponent from the previous re-solve (with
weight b) and a uniform range (with weight 1− b). This approach still has the same theoretical
guarantees as re-solving, but can reach better approximate solutions in fewer iterations. Another
option is more aggressive and sacrifices the re-solving guarantees when the opponent’s range
estimate is wrong. It forces the opponent with probability b to follow through into the game
with a hand sampled from the estimated opponent range. With probability 1− b they are given
a uniform random hand and can choose to terminate or follow through. This could prevent the
opponent’s strategy from reconstructing a correct range, but can speed up re-solving further
when we have a good opponent range estimate.

DeepStack uses an estimated opponent range during re-solving only for the first action of a
round, as this is the largest lookahead tree to re-solve. The range estimate comes from the last
re-solve in the previous round. When DeepStack is second to act in the round, the opponent
has already acted, biasing their range, so we use the conservative approach. When DeepStack
is first to act, though, the opponent could only have checked or called since our last re-solve.
Thus, the lookahead has an estimated range following their action. So in this case, we use the
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Table S6: Thinking times for both humans and DeepStack. DeepStack’s extremely fast pre-flop
speed shows that pre-flop situations often resulted in cache hits.

Thinking Time (s)
Humans DeepStack

Round Median Mean Median Mean

Pre-flop 10.3 16.2 0.04 0.2
Flop 9.1 14.6 5.9 5.9
Turn 8.0 14.0 5.4 5.5
River 9.5 16.2 2.2 2.1

Per Action 9.6 15.4 2.3 3.0
Per Hand 22.0 37.4 5.7 7.2

aggressive approach. In both cases, we set b = 0.9.

Speed of Play. The re-solving computation and neural network evaluations are both imple-
mented in Torch7 (53) and run on a single NVIDIA GeForce GTX 1080 graphics card. This
makes it possible to do fast batched calls to the counterfactual value networks for multiple
public subtrees at once, which is key to making DeepStack fast.

Table S6 reports the average times between the end of the previous (opponent or chance)
action and submitting the next action by both humans and DeepStack in our study. DeepStack,
on average, acted considerably faster than our human players. It should be noted that some
human players were playing up to four games simultaneously (although few players did more
than two), and so the human players may have been focused on another game when it became
their turn to act.

Deep Counterfactual Value Networks
DeepStack uses two counterfactual value networks, one for the flop and one for the turn, as
well as an auxiliary network that gives counterfactual values at the end of the pre-flop. In
order to train the networks, we generated random poker situations at the start of the flop and
turn. Each poker situation is defined by the pot size, ranges for both players, and dealt public
cards. The complete betting history is not necessary as the pot and ranges are a sufficient
representation. The output of the network are vectors of counterfactual values, one for each
player. The output values are interpreted as fractions of the pot size to improve generalization
across poker situations.

The training situations were generated by first sampling a pot size from a fixed distribution
which was designed to approximate observed pot sizes from older HUNL programs.1 The

1The fixed distribution selects an interval from the set of intervals {[100, 100), [200, 400), [400, 2000),
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player ranges for the training situations need to cover the space of possible ranges that CFR
might encounter during re-solving, not just ranges that are likely part of a solution. So we
generated pseudo-random ranges that attempt to cover the space of possible ranges. We used
a recursive procedure R(S, p), that assigns probabilities to the hands in the set S that sum to
probability p, according to the following procedure.

1. If |S| = 1, then Pr(s) = p.

2. Otherwise,

(a) Choose p1 uniformly at random from the interval (0, p), and let p2 = p− p1.
(b) Let S1 ⊂ S and S2 = S \ S1 such that |S1| = b|S|/2c and all of the hands in S1

have a hand strength no greater than hands in S2. Hand strength is the probability
of a hand beating a uniformly selected random hand from the current public state.

(c) Use R(S1, p1) and R(S2, p2) to assign probabilities to hands in S = S1

⋃
S2.

Generating a range involves invokingR(all hands, 1). To obtain the target counterfactual values
for the generated poker situations for the main networks, the situations were approximately
solved using 1,000 iterations of CFR+ with only betting actions fold, call, a pot-sized bet, and
all-in. For the turn network, ten million poker turn situations (from after the turn card is dealt)
were generated and solved with 6,144 CPU cores of the Calcul Québec MP2 research cluster,
using over 175 core years of computation time. For the flop network, one million poker flop
situations (from after the flop cards are dealt) were generated and solved. These situations were
solved using DeepStack’s depth limited solver with the turn network used for the counterfactual
values at public states immediately after the turn card. We used a cluster of 20 GPUS and
one-half of a GPU year of computation time. For the auxiliary network, ten million situations
were generated and the target values were obtained by enumerating all 22,100 possible flops
and averaging the counterfactual values from the flop network’s output.

Neural Network Training. All networks were trained using built-in Torch7 libraries, with
the Adam stochastic gradient descent procedure (34) minimizing the average of the Huber
losses (35) over the counterfactual value errors. Training used a mini-batch size of 1,000, and
a learning rate 0.001, which was decreased to 0.0001 after the first 200 epochs. Networks were
trained for approximately 350 epochs over two days on a single GPU, and the epoch with the
lowest validation loss was chosen.

Neural Network Range Representation. In order to improve generalization over input player
ranges, we map the distribution of individual hands (combinations of public and private cards)
into distributions of buckets. The buckets were generated using a clustering-based abstraction

[2000, 6000), [6000, 19950]} with uniform probability, followed by uniformly selecting an integer from within
the chosen interval.
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Figure S1: Huber loss with different numbers of hidden layers in the neural network.

technique, which cluster strategically similar hands using k-means clustering with earth mover’s
distance over hand-strength-like features (28, 54). For both the turn and flop networks we used
1,000 clusters and map the original ranges into distributions over these clusters as the first layer
of the neural network (see Figure 3 of the main article). This bucketing step was not used on the
auxiliary network as there are only 169 strategically distinct hands pre-flop, making it feasible
to input the distribution over distinct hands directly.

Neural Network Accuracies. The turn network achieved an average Huber loss of 0.016 of
the pot size on the training set and 0.026 of the pot size on the validation set. The flop network,
with a much smaller training set, achieved an average Huber loss of 0.008 of the pot size on the
training set, but 0.034 of the pot size on the validation set. Finally, the auxiliary network had
average Huber losses of 0.000053 and 0.000055 on the training and validation set, respectively.
Note that there are, in fact, multiple Nash equilibrium solutions to these poker situations, with
each giving rise to different counterfactual value vectors. So, these losses may overestimate the
true loss as the network may accurately model a different equilibrium strategy.

Number of Hidden Layers. We observed in early experiments that the neural network had
a lower validation loss with an increasing number of hidden layers. From these experiments,
we chose to use seven hidden layers in an attempt to tradeoff accuracy, speed of execution, and
the available memory on the GPU. The result of a more thorough experiment examining the
turn network accuracy as a function of the number of hidden layers is in Figure S1. It appears
that seven hidden layers is more than strictly necessary as the validation error does not improve
much beyond five. However, all of these architectures were trained using the same ten million
turn situations. With more training data it would not be surprising to see the larger networks see
a further reduction in loss due to their richer representation power.
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Proof of Theorem 1
The formal proof of Theorem 1, which establishes the soundness of DeepStack’s depth-limited
continual re-solving, is conceptually easy to follow. It requires three parts. First, we establish
that the exploitability introduced in a re-solving step has two linear components; one due to ap-
proximately solving the subgame, and one due to the error in DeepStack’s counterfactual value
network (see Lemmas 1 through 5). Second, we enable estimates of subgame counterfactual
values that do not arise from actual subgame strategies (see Lemma 6). Together, parts one and
two enable us to use DeepStack’s counterfactual value network for a single re-solve.2 Finally,
we show that using the opponent’s values from the best action, rather than the observed action,
does not increase overall exploitability (see Lemma 7). This allows us to carry forward esti-
mates of the opponent’s counterfactual value, enabling continual re-solving. Put together, these
three parts bound the error after any finite number of continual re-solving steps, concluding the
proof. We now formalize each step.

There are a number of concepts we use throughout this section. We use the notation from
Burch et al. (17) without any introduction here. We assume player 1 is performing the continual
re-solving. We call player 2 the opponent. We only consider the re-solve player’s strategy σ, as
the opponent is always using a best response to σ. All values are considered with respect to the
opponent, unless specifically stated. We say σ is ε-exploitable if the opponent’s best response
value against σ is no more than ε away from the game value for the opponent.

A public state S corresponds to the root of an imperfect information subgame. We write IS2
for the collection of player 2 information sets in S. Let G〈S, σ, w〉 be the subtree gadget game
(the re-solving game of Burch et al. (17)), where S is some public state, σ is used to get player 1
reach probabilities πσ−2(h) for each h ∈ S, and w is a vector where wI gives the value of player
2 taking the terminate action (T) from information set I ∈ IS2 . Let

BVI(σ) = max
σ∗2

∑
h∈I

πσ−2(h)uσ,σ
∗
2 (h)/πσ−2(I),

be the counterfactual value for I given we play σ and our opponent is playing a best response.
For a subtree strategy σS , we write σ → σS for the strategy that plays according to σS for any
state in the subtree and according to σ otherwise. For the gadget game G〈S, σ, w〉, the gadget
value of a subtree strategy σS is defined to be:

GVS
w,σ(σS) =

∑
I∈IS2

max(wI ,BVI(σ → σS)),

and the underestimation error is defined to be:

US
w,σ = min

σS
GVS

w,σ(σS)−
∑
I∈IS2

wI .

2The first part is a generalization and improvement on the re-solving exploitability bound given by Theorem 3
in Burch et al. (17), and the second part generalizes the bound on decomposition regret given by Theorem 2 of the
same work.
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Lemma S1 The game value of a gadget game G〈S, σ, w〉 is∑
I∈IS2

wI + US
w,σ.

Proof. Let σ̃S2 be a gadget game strategy for player 2 which must choose from the F and T
actions at starting information set I . Let ũ be the utility function for the gadget game.

min
σS
1

max
σ̃S
2

ũ(σS1 , σ̃
S
2 ) = min

σS
1

max
σS
2

∑
I∈IS2

πσ−2(I)∑
I′∈IS2

πσ−2(I
′)

max
a∈{F,T}

ũσ
S

(I, a)

= min
σS
1

max
σS
2

∑
I∈IS2

max(wI ,
∑
h∈I

πσ−2(h)uσ
S

(h))

A best response can maximize utility at each information set independently:

= min
σS
1

∑
I∈IS2

max(wI ,max
σS
2

∑
h∈I

πσ−2(h)uσ
S

(h))

= min
σS
1

∑
I∈IS2

max(wI ,BVI(σ → σS1 ))

= US
w,σ +

∑
I∈IS2

wI

Lemma S2 If our strategy σS is ε-exploitable in the gadget gameG〈S, σ, w〉, then GVSw,σ(σS) ≤∑
I∈IS2

wI + US
w,σ + ε

Proof. This follows from Lemma S1 and the definitions of ε-Nash, US
w,σ, and GVS

w,σ(σS).

Lemma S3 Given an εO-exploitable σ in the original game, if we replace a subgame with a
strategy σS such that BVI(σ → σS) ≤ wI for all I ∈ IS2 , then the new combined strategy has
an exploitability no more than εO + EXPSw,σ where

EXPSw,σ =
∑
I∈IS2

max(BVI(σ), wI)−
∑
I∈IS2

BVI(σ)
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Proof. We only care about the information sets where the opponent’s counterfactual value
increases, and a worst case upper bound occurs when the opponent best response would reach
every such information set with probability 1, and never reach information sets where the value
decreased.

Let Z[S] ⊆ Z be the set of terminal states reachable from some h ∈ S and let v2 be the
game value of the full game for player 2. Let σ2 be a best response to σ and let σS2 be the part
of σ2 that plays in the subtree rooted at S. Then necessarily σS2 achieves counterfactual value
BVI(σ) at each I ∈ IS2 .

max
σ∗2

(u(σ → σS, σ∗2))

= max
σ∗2

[ ∑
z∈Z[S]

πσ→σ
S

−2 (z)π
σ∗2
2 (z)u(z) +

∑
z∈Z\Z[S]

πσ→σ
S

−2 (z)π
σ∗2
2 (z)u(z)

]

= max
σ∗2

[ ∑
z∈Z[S]

πσ→σ
S

−2 (z)π
σ∗2
2 (z)u(z)−

∑
z∈Z[S]

πσ−2(z)π
σ∗2→σS

2
2 (z)u(z)

+
∑
z∈Z[S]

πσ−2(z)π
σ∗2→σS

2
2 (z)u(z) +

∑
z∈Z\Z[S]

πσ−2(z)π
σ∗2
2 (z)u(z)

]

≤ max
σ∗2

[ ∑
z∈Z[S]

πσ→σ
S

−2 (z)π
σ∗2
2 (z)u(z)−

∑
z∈Z[S]

πσ−2(z)π
σ∗2→σS

2
2 (z)u(z)

]

+ max
σ∗2

[ ∑
z∈Z[S]

πσ−2(z)π
σ∗2→σS

2
2 (z)u(z) +

∑
z∈Z\Z[S]

πσ−2(z)π
σ∗2
2 (z)u(z)

]

≤ max
σ∗2

[∑
I∈IS2

∑
h∈I

πσ−2(h)π
σ∗2
2 (h)uσ

S ,σ∗2 (h)

−
∑
I∈IS2

∑
h∈I

πσ−2(h)π
σ∗2
2 (h)uσ,σ

S
2 (h)

]
+ max

σ∗2
(u(σ, σ∗2))

By perfect recall π2(h) = π2(I) for each h ∈ I:

≤ max
σ∗2

[∑
I∈IS2

π
σ∗2
2 (I)

(∑
h∈I

πσ−2(h)uσ
S ,σ∗2 (h)−

∑
h∈I

πσ−2(h)uσ,σ
S
2 (h)

)]
+ v2 + εO

= max
σ∗2

[∑
I∈IS2

π
σ∗2
2 (I)πσ−2(I)

(
BVI(σ → σS)− BVI(σ)

)]
+ v2 + εO

≤
[∑
I∈IS2

max(BVI(σ → σS)− BVI(σ), 0)

]
+ v2 + εO
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≤
[∑
I∈IS2

max(wI − BVI(σ),BVI(σ)− BVI(σ))

]
+ v2 + εO

=

[∑
I∈IS2

max(BVI(σ), wI)−
∑
I∈IS2

BVI(σ)

]
+ v2 + εO

Lemma S4 Given an εO-exploitable σ in the original game, if we replace the strategy in a
subgame with a strategy σS that is εS-exploitable in the gadget game G〈S, σ, w〉, then the new
combined strategy has an exploitability no more than εO + EXPSw,σ + US

w,σ + εS .

Proof. We use that max(a, b) = a+ b−min(a, b). From applying Lemma S3 with
wI = BVI(σ → σS) and expanding EXPSBV(σ→σS),σ we get exploitability no more than
εO −

∑
I∈IS2

BVI(σ) plus∑
I∈IS2

max(BVI(σ → σS),BVI(σ))

≤
∑
I∈IS2

max(BVI(σ → σS),max(wI ,BVI(σ))

=
∑
I∈IS2

(
BVI(σ → σS) + max(wI ,BVI(σ))

−min(BVI(σ → σS),max(wI ,BVI(σ)))
)

≤
∑
I∈IS2

(
BVI(σ → σS) + max(wI ,BVI(σ))

−min(BVI(σ → σS), wI)
)

=
∑
I∈IS2

(
max(wI ,BVI(σ)) + max(wI ,BVI(σ → σS))− wI

)
=
∑
I∈IS2

max(wI ,BVI(σ)) +
∑
I∈IS2

max(wI ,BVI(σ → σS))−
∑
I∈IS2

wI

From Lemma S2 we get

≤
∑
I∈IS2

max(wI ,BVI(σ)) + US
w,σ + εS

Adding εO −
∑

I BVI(σ) we get the upper bound εO + EXPSw,σ + US
w,σ + εS .
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Lemma S5 Assume we are performing one step of re-solving on subtree S, with constraint
values w approximating opponent best-response values to the previous strategy σ, with an ap-
proximation error bound

∑
I |wI − BVI(σ)| ≤ εE . Then we have EXPSw,σ + US

w,σ ≤ εE .

Proof. EXPSw,σ measures the amount that the wI exceed BVI(σ), while US
w,σ bounds the amount

that the wI underestimate BVI(σ → σS) for any σS , including the original σ. Thus, together
they are bounded by |wI − BVI(σ)|:

EXPSw,σ + US
w,σ =

∑
I∈IS2

max(BVI(σ), wI)−
∑
I∈IS2

BVI(σ)

+ min
σS

∑
I∈IS2

max(wI ,BVI(σ → σS))−
∑
I∈IS2

wI

≤
∑
I∈IS2

max(BVI(σ), wI)−
∑
I∈IS2

BVI(σ)

+
∑
I∈IS2

max(wI ,BVI(σ))−
∑
I∈IS2

wI

=
∑
I∈IS2

[max(wI − BVI(σ), 0) + max(BVI(σ)− wI , 0)]

=
∑
I∈IS2

|wI − BVI(σ)| ≤ εE

Lemma S6 Assume we are solving a game G with T iterations of CFR-D where for both play-
ers p, subtrees S, and times t, we use subtree values vI for all information sets I at the root
of S from some suboptimal black box estimator. If the estimation error is bounded, so that
minσ∗S∈NES

∑
I∈IS2
|vσ∗S(I)−vI | ≤ εE , then the trunk exploitability is bounded by kG/

√
T+jGεE

for some game specific constant kG, jG ≥ 1 which depend on how the game is split into a trunk
and subgames.

Proof. This follows from a modified version the proof of Theorem 2 of Burch et al. (17), which
uses a fixed error ε and argues by induction on information sets. Instead, we argue by induction
on entire public states.

For every public state s, let Ns be the number of subgames reachable from s, including any
subgame rooted at s. Let Succ(s) be the set of our public states which are reachable from s
without going through another of our public states on the way. Note that if s is in the trunk,
then every s′ ∈ Succ(s) is in the trunk or is the root of a subgame. Let DTR(s) be the set of
our trunk public states reachable from s, including s if s is in the trunk. We argue that for any
public state s where we act in the trunk or at the root of a subgame∑

I∈s

RT,+
full(I) ≤

∑
s′∈DTR(s)

∑
I∈s′

RT,+(I) + TNsεE (S1)
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First note that if no subgame is reachable from s, then Ns = 0 and the statement follows from
Lemma 7 of (14). For public states from which a subgame is reachable, we argue by induction
on |DTR(s)|.

For the base case, if |DTR(s)| = 0 then s is the root of a subgame S, and by assumption there
is a Nash Equilibrium subgame strategy σ∗S that has regret no more than εE . If we implicitly
play σ∗S on each iteration of CFR-D, we thus accrue

∑
I∈sR

T,+
full(I) ≤ TεE .

For the inductive hypothesis, we assume that (S1) holds for all s such that |DTR(s)| < k.
Consider a public state s where |DTR(s)| = k. By Lemma 5 of (14) we have

∑
I∈s

RT,+
full(I) ≤

∑
I∈s

RT (I) +
∑

I′∈Succ(I)

RT,+
full(I)


=
∑
I∈s

RT (I) +
∑

s′∈Succ(s)

∑
I′∈s′

RT,+
full(I

′)

For each s′ ∈ Succ(s), D(s′) ⊂ D(s) and s 6∈ D(s′), so |D(s′)| < |D(s)| and we can apply
the inductive hypothesis to show

∑
I∈s

RT,+
full(I) ≤

∑
I∈s

RT (I) +
∑

s′∈Succ(s)

 ∑
s′′∈D(s′)

∑
I∈s′′

RT,+(I) + TNs′εE


≤

∑
s′∈D(s)

∑
I∈s′

RT,+(I) + TεE
∑

s′∈Succ(s)

Ns′

=
∑

s′∈D(s)

∑
I∈s′

RT,+(I) + TεENs

This completes the inductive argument. By using regret matching in the trunk, we ensure
RT (I) ≤ ∆

√
AT , proving the lemma for kG = ∆|IT R|

√
A and jG = Nroot.

Lemma S7 Given our strategy σ, if the opponent is acting at the root of a public subtree S
from a set of actions A, with opponent best-response values BVI·a(σ) after each action a ∈ A,
then replacing our subtree strategy with any strategy that satisfies the opponent constraints
wI = maxa∈A BVI·a(σ) does not increase our exploitability.

Proof. If the opponent is playing a best response, every counterfactual value wI before the
action must either satisfy wI = BVI(σ) = maxa∈A BVI·a(σ), or not reach state s with private
information I . If we replace our strategy in S with a strategy σ′S such that BVI·a(σ

′
S) ≤ BVI(σ)

we preserve the property that BVI(σ
′) = BVI(σ).

Theorem S1 Assume we have some initial opponent constraint values w from a solution gener-
ated using at least T iterations of CFR-D, we use at least T iterations of CFR-D to solve each re-
solving game, and we use a subtree value estimator such that minσ∗S∈NES

∑
I∈IS2
|vσ∗S(I)−vI | ≤
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εE , then after d re-solving steps the exploitability of the resulting strategy is no more than
(d+ 1)k/

√
T + (2d+ 1)jεE for some constants k, j specific to both the game and how it is split

into subgames.

Proof. Continual re-solving begins by solving from the root of the entire game, which we label
as subtree S0. We use CFR-D with the value estimator in place of subgame solving in order to
generate an initial strategy σ0 for playing in S0. By Lemma S6, the exploitability of σ0 is no
more than k0/

√
T + j0εE .

For each step of continual re-solving i = 1, ..., d, we are re-solving some subtree Si. From
the previous step of re-solving, we have approximate opponent best-response counterfactual val-
ues B̃VI(σi−1) for each I ∈ ISi−1

2 , which by the estimator bound satisfy |
∑

I∈I
Si−1
2

BVI(σi−1)−

B̃VI(σi−1)| ≤ εE . Updating these values at each public state between Si−1 and Si as described
in the paper yields approximate values B̃VI(σi−1) for each I ∈ ISi

2 which by Lemma S7 can
be used as constraints wI,i in re-solving. Lemma S5 with these constraints gives us the bound
EXPSi

wi,σi−1
+ USi

wi,σi−1
≤ εE . Thus by Lemma S4 and Lemma S6 we can say that the increase in

exploitability from σi−1 to σi is no more than εE + εSi
≤ εE +ki/

√
T + jiεE ≤ ki/

√
T + 2jiεE .

Let k = maxi ki and j = maxi ji. Then after d re-solving steps, the exploitability is bounded
by (d+ 1)k/

√
T + (2d+ 1)jεE .

Best-response Values Versus Self-play Values
DeepStack uses self-play values within the continual re-solving computation, rather than the
best-response values described in Theorem S1. Preliminary tests using CFR-D to solve smaller
games suggested that strategies generated using self-play values were generally less exploitable
and had better one-on-one performance against test agents, compared to strategies generated
using best-response values. Figure S2 shows an example of DeepStack’s exploitability in a
particular river subgame with different numbers of re-solving iterations. Despite lacking a
theoretical justification for its soundness, using self-play values appears to converge to low
exploitability strategies just as with using best-response values.

One possible explanation for why self-play values work well with continual re-solving is
that at every re-solving step, we give away a little more value to our best-response opponent
because we are not solving the subtrees exactly. If we use the self-play values for the opponent,
the opponent’s strategy is slightly worse than a best response, making the opponent values
smaller and counteracting the inflationary effect of an inexact solution. While this optimism
could hurt us by setting unachievable goals for the next re-solving step (an increased US

w,σ

term), in poker-like games we find that the more positive expectation is generally correct (a
decreased EXPSw,σ term.)
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Figure S2: DeepStack’s exploitability within a particular public state at the start of the river as
a function of the number of re-solving iterations.

Pseudocode
Complete pseudocode for DeepStack’s depth-limited continual re-resolving algorithm is in Al-
gorithm S1. Conceptually, DeepStack can be decomposed into four functions: RE-SOLVE,
VALUES, UPDATESUBTREESTRATEGIES, and RANGEGADGET. The main function is RE-
SOLVE, which is called every time DeepStack needs to take an action. It iteratively calls each of
the other functions to refine the lookahead tree solution. After T iterations, an action is sampled
from the approximate equilibrium strategy at the root of the subtree to be played. According to
this action, DeepStack’s range, ~r1, and its opponent’s counterfactual values, ~v2, are updated in
preparation for its next decision point.
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Algorithm S1 Depth-limited continual re-solving
INPUT: Public state S, player range r1 over our information sets in S, opponent counterfactual values
v2 over their information sets in S, and player information set I ∈ S
OUTPUT: Chosen action a, and updated representation after the action (S(a), r1(a),v2(a))

1: function RE-SOLVE(S, r1,v2, I)
2: σ0 ← arbitrary initial strategy profile
3: r02 ← arbitrary initial opponent range
4: R0

G, R
0 ← 0 . Initial regrets for gadget game and subtree

5: for t = 1 to T do
6: vt1,v

t
2 ← VALUES(S, σt−1, r1, rt−12 , 0)

7: σt, Rt ← UPDATESUBTREESTRATEGIES(S,vt1,v
t
2, R

t−1)
8: rt2, R

t
G ← RANGEGADGET(v2,v

t
2(S), R

t−1
G )

9: end for
10: σT ← 1

T

∑T
t=1 σ

t . Average the strategies
11: a ∼ σT (·|I) . Sample an action
12: r1(a)← 〈r1, σ(a|·)〉 . Update the range based on the chosen action
13: r1(a)← r1(a)/||r1(a)||1 . Normalize the range
14: v2(a)← 1

T

∑T
t=1 v

t
2(a) . Average of counterfactual values after action a

15: return a, S(a), r1(a),v2(a)
16: end function

17: function VALUES(S, σ, r1, r2, d) . Gives the counterfactual values of the subtree S under σ,
computed with a depth-limited lookahead.

18: if S is terminal then
19: v1(S)← USr2 . Where US is the matrix of the bilinear utility function at S,
20: v2(S)← rᵀ1US U(S) = rᵀ1USr2, thus giving vectors of counterfactual values
21: return v1(S),v2(S)
22: else if d = MAX-DEPTH then
23: return NEURALNETEVALUATE(S, r1, r2)
24: end if
25: v1(S),v2(S)← 0
26: for action a ∈ S do
27: rPlayer(S)(a)← 〈rPlayer(S), σ(a|·)〉 . Update range of acting player based on strategy
28: rOpponent(S)(a)← rOpponent(S)
29: v1(S(a)),v2(S(a))← VALUE(S(a), σ, r1(a), r2(a), d+ 1)
30: vPlayer(S)(S)← vPlayer(S)(S) + σ(a|·)vPlayer(S)(S(a)) . Weighted average
31: vOpponent(S)(S)← vPlayer(S)(S) + vOpponent(S)(S(a))

. Unweighted sum, as our strategy is already in-
cluded in opponent counterfactual values

32: end for
33: return v1,v2

34: end function
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35: function UPDATESUBTREESTRATEGIES(S,v1,v2, R
t−1)

36: for S′ ∈ {S} ∪ SubtreeDescendants(S) with Depth(S′) < MAX-DEPTH do
37: for action a ∈ S′ do
38: Rt(a|·)← Rt−1(a|·) + vPlayer(S′)(S

′(a))− vPlayer(S′)(S
′)
. Update acting player’s regrets

39: end for
40: for information set I ∈ S′ do
41: σt(·|I)← Rt(·|I)+∑

aR
t(a|I)+ . Update strategy with regret matching

42: end for
43: end for
44: return σt, Rt
45: end function

46: function RANGEGADGET(v2,v
t
2, R

t−1
G ) . Let opponent choose to play in the subtree or

receive the input value with each hand (see
Burch et al. (17))

47: σG(F|·)←
Rt−1

G (F|·)+

Rt−1
G (F|·)++Rt−1

G (T|·)+ . F is Follow action, T is Terminate

48: rt2 ← σG(F|·)
49: vtG ← σG(F|·)vt−12 + (1− σG(F|·))v2 . Expected value of gadget strategy
50: RtG(T|·)← Rt−1G (T|·) + v2 − vt−1G . Update regrets
51: RtG(F|·)← Rt−1G (F|·) + vt2 − vtG
52: return rt2, R

t
G

53: end function
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